A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Preliminary Economic Analysis of Railbelt RPS, Scenario 3 | |||||||||||||||||||||||||
2 | By: Alan Mitchell, Analysis North, alan@analysisnorth.com, 907-310-9124 | |||||||||||||||||||||||||
3 | ||||||||||||||||||||||||||
4 | This model calculates very preliminary Costs and Benefits of Implementing Scenario 3 relative to the Base Case | |||||||||||||||||||||||||
5 | Scenario described in the Renewable Portfolio Standard Assessment for Alaska's Railbelt, authored by the National | |||||||||||||||||||||||||
6 | Renewable Energy Laboratory (NREL). | |||||||||||||||||||||||||
7 | ||||||||||||||||||||||||||
8 | This is a back-of-the-envelope analysis; a thorough estimate of costs and benefits is needed. | |||||||||||||||||||||||||
9 | The model simplistically assumes that all of the investments to implment Scenario 3 are made in 2035, | |||||||||||||||||||||||||
10 | and fuel savings are calculated and accrued from that point forward. All dollars are 2020 inflation-adjusted dollars. | |||||||||||||||||||||||||
11 | ||||||||||||||||||||||||||
12 | ** If you make a Copy and Edit this Model, please indicate who you are and what changes were made. | |||||||||||||||||||||||||
13 | ||||||||||||||||||||||||||
14 | Summary Slides are available Here | |||||||||||||||||||||||||
15 | ||||||||||||||||||||||||||
16 | Blue values are inputs, | |||||||||||||||||||||||||
17 | Purple values are inputs to this model but come unaltered from the NREL Study. | |||||||||||||||||||||||||
18 | Black values are calculated by this model. | |||||||||||||||||||||||||
19 | ||||||||||||||||||||||||||
20 | Changes in Generation Capacity between Base Case and Scenario 3 | |||||||||||||||||||||||||
21 | ||||||||||||||||||||||||||
22 | From Table 4 of the NREL RPS Study | |||||||||||||||||||||||||
23 | ||||||||||||||||||||||||||
24 | Final Portfolio Capacity (MW) | |||||||||||||||||||||||||
25 | Technology | Base Case | Scenario 3 | Change | ||||||||||||||||||||||
26 | Wind | 45 | 847 | 802 | ||||||||||||||||||||||
27 | Solar | 1 | 456 | 455 | ||||||||||||||||||||||
28 | Hydro (Storage) | 186 | 248 | 62 | ||||||||||||||||||||||
29 | Hydro (run-of-river) | 25 | 25 | 0 | ||||||||||||||||||||||
30 | Geothermal | 0.4 | 0.4 | 0 | ||||||||||||||||||||||
31 | Biomass | 0 | 50 | 50 | ||||||||||||||||||||||
32 | Landfill Gas | 7 | 7 | 0 | ||||||||||||||||||||||
33 | Tidal | 0 | 0 | 0 | ||||||||||||||||||||||
34 | Battery Storage | 163 | 163 | 0 | ||||||||||||||||||||||
35 | Fossil thermal | 2,048 | 1,911 | -137 | ||||||||||||||||||||||
36 | Total | 2,475 | 3,707 | 1,232 | MW | |||||||||||||||||||||
37 | ||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||
39 | Estimate Capital Costs for Changes in Generation Capacity to Implement Scenario 3 | |||||||||||||||||||||||||
40 | Use the change in generation capacity from above along with per unit capital cost estimates to estimate | |||||||||||||||||||||||||
41 | total capital cost required to implement Scenario 3. | |||||||||||||||||||||||||
42 | ||||||||||||||||||||||||||
43 | Technology | Generation Change, MW | Unit Generation Capital Cost $ / kW (2020 $) | Additional Generation Capital Cost $ million (2020 $) | Notes on Unit Generation Cost Estimates | |||||||||||||||||||||
44 | Wind | 802 | $2,912 | $2,335 | 1.94 times the US Average for 100-200 MW plants built in 2019-2020 (from the 2021 Land-based Wind Market Report). 1.94 is the ratio of the Eva Creek cost / kW to the national average at the time it was built. Conservative because larger RPS Project should be less. Also, coastal projects should be less. | |||||||||||||||||||||
45 | Solar | 455 | $1,750 | $796 | Upper range of the cost estimate for a proposed HEA 20 MW project, as stated in this article: https://www.kbbi.org/2021-10-21/proposed-solar-farm-ippsolar | |||||||||||||||||||||
46 | Hydro (Storage) | 62 | $1,484 | $92 | This is the cost of just adding another 63 MW Turbine to the Bradley Powerhouse. Rough estimate from Bryan Carey, AEA. | |||||||||||||||||||||
47 | Hydro (run-of-river) | 0 | ||||||||||||||||||||||||
48 | Geothermal | 0 | ||||||||||||||||||||||||
49 | Biomass | 50 | $4,462 | $223 | 1.94 (use Wind Capital Adjustment) times the EPA Average estimate here: https://www.epa.gov/sites/default/files/2015-07/documents/biomass_combined_heat_and_power_catalog_of_technologies_7._representative_biomass_chp_system_cost_and_performance_profiles.pdf | |||||||||||||||||||||
50 | Landfill Gas | 0 | ||||||||||||||||||||||||
51 | Tidal | 0 | ||||||||||||||||||||||||
52 | Battery Storage | 0 | ||||||||||||||||||||||||
53 | Fossil thermal | -137 | $1,510 | -$207 | From Railbelt IRP Study, Black and Veatch, Table 10-13, GE LM6000 Turbine: http://www.susitna-watanahydro.org/wp-content/uploads/2012/05/Black_Veatch_2010_AlaskaRIRPFinalReport.pdf, adjusted to 2020 $. | |||||||||||||||||||||
54 | Total | $3,240 | million | |||||||||||||||||||||||
55 | ||||||||||||||||||||||||||
56 | Conclusion: | Incremental capital costs to implement Scenario 3 are approximately $ 3.2 billion (2020 $) | ||||||||||||||||||||||||
57 | ||||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | Estimate Change in Annual Fuel and Operating Costs of Scenario 3 vs. the Base Case | |||||||||||||||||||||||||
60 | Positive values in this Section are Cost Savings, negative value are cost increases. | |||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||
62 | Fuel Savings | |||||||||||||||||||||||||
63 | Fuel Savings shown in the NREL RPS Report are for the year 2040. This model assumes a one-time investment in the year 2035, so adjust | |||||||||||||||||||||||||
64 | first year fuel savings back to that year. | |||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||
66 | Low Fuel Savings Estimate in 2040: | $426 | million / year | |||||||||||||||||||||||
67 | High Fuel Savings Estimate in 2040: | $506 | million / year | |||||||||||||||||||||||
68 | Average: | $466 | million / year | |||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | Scale this back to 2035 using ratio of blended fuel prices from those two years | |||||||||||||||||||||||||
71 | 2040 Blended Fuel Price: | $16.6 | / MMBTU | from RPS Report | ||||||||||||||||||||||
72 | 2035 Blended Fuel Price: | $14.7 | / MMBTU | from RPS Report | ||||||||||||||||||||||
73 | Ratio of 2035 to 2040: | 0.886 | ||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||
75 | 2035 Fuel Savings: | $413 | million / year | |||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | Operating & Maintenance Cost Impacts | |||||||||||||||||||||||||
78 | Positive values are O&M Savings, negative are O&M Cost Increases | |||||||||||||||||||||||||
79 | The per kW operating costs inputed below are applied to the additional capacity requirements calculated in the first section above. | |||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||
81 | Category | Operating Cost $ / kW / year | Savings $ million / year (2020 $) | Notes | ||||||||||||||||||||||
82 | Wind Operating Cost | $49 | $ (39) | 1.94 times average O&M for US plants with 2020 data. From Land-Based Wind Market Report, 2021 Edition, US DOE. | ||||||||||||||||||||||
83 | Solar Operating Cost | $23 | $ (11) | 1.46 times the value in this document, Slide 21: https://eta-publications.lbl.gov/sites/default/files/utility_scale_solar_2021_edition_slides.pdf . The 1.46 multiplier is consistent with Capital Cost estimate for solar. | ||||||||||||||||||||||
84 | Hydro (Storage) Operating Cost | $30 | $ (2) | Estimated as 2% of capital cost / year. | ||||||||||||||||||||||
85 | Biomass Operating Cost | $245 | $ (12) | 1.94 times the value in this table: https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf | ||||||||||||||||||||||
86 | Reduced Fossil Fixed Operating Cost | $78 | $ 11 | From Railbelt IRP Study, Black and Veatch, Table 10-13, GE LM6000 Turbine: http://www.susitna-watanahydro.org/wp-content/uploads/2012/05/Black_Veatch_2010_AlaskaRIRPFinalReport.pdf, adjusted to 2020 $. | ||||||||||||||||||||||
87 | Reduced Fossil Variable Operating Cost | $ 15 | From Railbelt IRP Study, Black and Veatch, Table 10-13, GE LM6000 Turbine: http://www.susitna-watanahydro.org/wp-content/uploads/2012/05/Black_Veatch_2010_AlaskaRIRPFinalReport.pdf, adjusted to 2020 $. | |||||||||||||||||||||||
88 | Total | $ (38) | million per year | |||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | Summary of Benefits and Costs | |||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | Upfront Capital Cost | |||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | Additional Capital Cost for Scenario 3 beyond Base Case: | $3,240 | million | |||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | Annual Fuel and O&M Impacts | |||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | Inputs for Converting Annual Impacts to a Present Value | |||||||||||||||||||||||||
100 | Real Discount Rate: | 3% | per year. AEA value for Renerwable Energy Fund analysis, also is rate used in DOE Life-Cycle Cost Analysis |