A | B | C | D | E | F | G | H | I | J | K | L | M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 6th Grade Math 1st Quarter | ||||||||||||
2 | Essential Skills Embedded throughout the SDOW Curriculum: Link | ||||||||||||
3 | Professional Communication | Critical Thinking | Emotional Intelligence | Time Management/Organization | Leadership | ||||||||
4 | Technology | Digital Citizenship | Learning from Failure | Conflict Resolution | Teamwork | ||||||||
5 | Unit 1 - Fractions and Decimals Envision Topic 1 | PLC Questions I: What is it the student is to know and do? Goal: - Solve addition, subtraction, multiply, and divide fractions/mixed numbers -Solve addition, subtraction, multiply, and divide decimals -Model fraction and decimal multiplication/division Common language: quotient, mixed number, reciprocal, invert, conjecture, tape diagram, area model | DOK | Introduce (I) Dev. Mastery (DM) Master (M) Reinforce (R) | |||||||||
6 | Essential Question: | What does it mean to multiply fractions? How can you divide by a fraction? How can you model division by a mixed number? How can you add, subtract and mulitp.y decimals? How can you use base 10 blocks to model decimal division? | 1st | 2nd | 3rd | 4th | |||||||
7 | |||||||||||||
8 | Strand: 6.NS.A | Apply and extend previous understandings of multiplication and division to divide fractions by fractions. | |||||||||||
9 | 6.NS.A.1 | Compute and interpret quotients of positive fractions. a. Solve problems and word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) ÷ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi? | I can compute and interpret quotients of positive fractions. (6.NS.A.1.a) I can solve problems involving division of fractions by fractions. (6.NS.A.1.a) | 2 | DM/M | ||||||||
10 | Strand: 6.NS.B | Compute with non-negative multi-digit numbers, and find common factors and multiples. | |||||||||||
11 | 6.NS.B.3 | Demonstrate fluency with addition, subtraction, multiplication and division of multi-digit decimals using any strategy based on place value. | 2 | R | |||||||||
12 | Unit 2 - Integers and the Coordinate Plane Envision Topic 2 | Goal: - Use integers to represent quantities - Represent integers on a number line - Understand and interpret absolute value - Use knowledge of intergers to graph in all four quadrants of the coordinate plane Common language: positive, negative, opposite, rational number, integer, coordinate plane, ordered pair, coordinates, x-coordinate, y-coordinate, quadrant, reflection, absolute value | DOK | Introduce (I) Dev. Mastery (DM) Master (M) Reinforce (R) | |||||||||
13 | Essential Question: | How can you represent numbers that are less than 0? How can you use a number line to compare positive and negative fractions and decimals? How can you use a number line to order real life events? How can you describe how far an object is from sea level? How can you graph and locate points that contain negative numbers in a coordinate plane? | 1st | 2nd | 3rd | 4th | |||||||
14 | |||||||||||||
15 | Strand: 6.NS.C | Apply and extend previous understandings of numbers to the system of rational numbers. | |||||||||||
16 | 6.NS.C.5 - Consider that this shows up earlier in the year - Unit 2 & 3 | Use positive and negative numbers to represent quantities in real-world contexts. a. Explain the meaning of 0 in each situation. b. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge). | 2 | I/M | |||||||||
17 | 6.NS.C.6 *only 6.NS.C.6c is a priority standard | Locate a rational number as a point on the number line. a.Locate rational numbers on a horizontal or vertical number line. | 2 | I/M | |||||||||
18 | b.Write, interpret and explain problems of ordering of rational numbers in real-world contexts. For example, write -3 oC > -7 oC to express the fact that -3 oC is warmer than -7 oC *Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 > -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.. | ||||||||||||
19 | c.Understand that a number and its opposite (additive inverse) are located on opposite sides of zero on the number line. *recognize that the opposite of the opposite of a number is the number itself, e.g., -(-3) = 3, and that 0 is its own opposite. | I can understand that a number and its opposite (additive inverse) are located on opposite sides of zero on the number line. (6.NS.C.6.c) | |||||||||||
20 | 6.NS.C.7 | Understand that the absolute value of a rational number is its distance from 0 on the number line. a. interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write |-30| = 30 to describe the size of the debt in dollars. b. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars. | I can understand that the absolute value of a rational number is its distance from 0 on the number line. (6.NS.C.7) | 2 | I/M | ||||||||
21 | Strand: 6.GM.A | Solve problems involving area, surface area and volume. | |||||||||||
22 | 6.GM.A.3 Only focus on locating ordered pairs in the first quadrant | 6.GM.A.3.a Understand signs of numbers in ordered pairs as indicating locations in quadrants of the Cartesian coordinate plane | I can understand signs of numbers in ordered pairs as indicating locations in quadrants of the Cartesian coordinate plane. (6.GM.A.3.a) | 3 | DM/M | ||||||||
23 | 6.GM.A.3.b Recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes | I can recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. (6.GM.A.3.b) | |||||||||||
24 | 6.GM.A.3.c Find distances between points with the same first coordinate or the same second coordinate | I can find distances between points with the same first coordinate or the same second coordinate. (6.GM.A.3.c) | |||||||||||
25 | d.Construct polygons in the Cartesian coordinate plane. * Apply these techniques in the context of solving real-world and mathematical problems. | I can construct polygons in the Cartesian coordinate plane. (6.GM.A.3.d) | |||||||||||
26 | |||||||||||||
27 | |||||||||||||
28 | |||||||||||||
29 | |||||||||||||
30 | |||||||||||||
31 | |||||||||||||
32 | |||||||||||||
33 | |||||||||||||
34 | |||||||||||||
35 | |||||||||||||
36 | |||||||||||||
37 | |||||||||||||
38 | |||||||||||||
39 | |||||||||||||
40 | |||||||||||||
41 | |||||||||||||
42 | |||||||||||||
43 | |||||||||||||
44 | |||||||||||||
45 | |||||||||||||
46 | |||||||||||||
47 | |||||||||||||
48 | |||||||||||||
49 | |||||||||||||
50 | |||||||||||||
51 | |||||||||||||
52 | |||||||||||||
53 | |||||||||||||
54 | |||||||||||||
55 | |||||||||||||
56 | |||||||||||||
57 | |||||||||||||
58 | |||||||||||||
59 | |||||||||||||
60 | |||||||||||||
61 | |||||||||||||
62 | |||||||||||||
63 | |||||||||||||
64 | |||||||||||||
65 | |||||||||||||
66 | |||||||||||||
67 | |||||||||||||
68 | |||||||||||||
69 | |||||||||||||
70 | |||||||||||||
71 | |||||||||||||
72 | |||||||||||||
73 | |||||||||||||
74 | |||||||||||||
75 | |||||||||||||
76 | |||||||||||||
77 | |||||||||||||
78 | |||||||||||||
79 | |||||||||||||
80 | |||||||||||||
81 | |||||||||||||
82 | |||||||||||||
83 | |||||||||||||
84 | |||||||||||||
85 | |||||||||||||
86 | |||||||||||||
87 | |||||||||||||
88 | |||||||||||||
89 | |||||||||||||
90 | |||||||||||||
91 | |||||||||||||
92 | |||||||||||||
93 | |||||||||||||
94 | |||||||||||||
95 | |||||||||||||
96 | |||||||||||||
97 | |||||||||||||
98 | |||||||||||||
99 | |||||||||||||
100 |