A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | PHY 2030 Evidences (up through Q10) | |||||||||||||||||||||||||

2 | Fall 2019 | |||||||||||||||||||||||||

3 | Check back for updates | |||||||||||||||||||||||||

4 | ||||||||||||||||||||||||||

5 | Active? | Chapter | Name | Standard / Evidence | Problems | |||||||||||||||||||||

6 | YES | L A B | LApp | I can use a lab apparatus with appropriate technique to make measurements accurately and precisely. | ||||||||||||||||||||||

7 | YES | LData | I can properly obtain, reduce, and analyze data, and I can calculate and use the uncertainties associated with measurements to remark on the validity of my results. | |||||||||||||||||||||||

8 | YES | LNote | I can keep and maintain a laboratory notebook using appropriate record keeping techniques in science. | |||||||||||||||||||||||

9 | NO | LRForm | I can write a lab report in LaTeX following the structure and guidelines presented to me by my lab instructor. | |||||||||||||||||||||||

10 | NO | LRClarity | I can write clear and concise text in a lab report that describes an experiment, measurements, and conclusions | |||||||||||||||||||||||

11 | NO | LRData | I can use tables, plots, and other figures in a lab report to present data and results in a clear, effective, and aesthetically pleasing way. | |||||||||||||||||||||||

12 | NO | LFermi | I can solve mathematical problems (e.g., "Fermi" problems) in my head and on paper without the use of a calculator (to within an order of magnitude of the correct answer). | |||||||||||||||||||||||

13 | NO | S P E C I A L - R E L A T I V I T Y | R1 | Rel | I can state the Principle of Relativity and can apply it to non-relativistic motion | |||||||||||||||||||||

14 | NO | Rel.1 | I can design a test for whether a reference frame is inertial or not and can identify inertial reference frames. | |||||||||||||||||||||||

15 | NO | Rel.2 | I can state the Principle of Relativity. | |||||||||||||||||||||||

16 | NO | Rel.3 | I can derive the Galilean transformation equations for position and velocity and can use them to make predictions of what an observer in a particular inertial reference frame would measure. | |||||||||||||||||||||||

17 | NO | Rel.4 | I can describe how clocks are synchronized in Newtonian Relativity and what measurements observers in inertial reference frames will agree on. | |||||||||||||||||||||||

18 | NO | R1,R2 | SR | I can provide evidence for Special Relativity and can apply SR to relativistic motion | ||||||||||||||||||||||

19 | NO | SR.1 | I can explain the "problem with electromagnetic waves" and the experiment(s) that showed the non-existence of the ether. | |||||||||||||||||||||||

20 | NO | SR.2 | I can describe how clocks are synchronized in Special Relativity. | |||||||||||||||||||||||

21 | NO | SR.3 | I can convert between SI units and SR units. | |||||||||||||||||||||||

22 | NO | SR.4 | I can sketch and interpret worldlines on a spacetime diagram. | |||||||||||||||||||||||

23 | NO | R2, R3, R4 | Time | I can measure or calculate position, coordinate time, proper time, and spacetime interval, and I know what quantities are invariant. | ||||||||||||||||||||||

24 | NO | Time.1 | I can define coordinate time, proper time, and spacetime interval and can describe how each quantity is measured. I can use a geometric analogy with spacial coordinates to describe each quantity, thus comparing plane geometry and spacetime geometry. | |||||||||||||||||||||||

25 | NO | Time.2 | I can explain why events that are simultaneous in one inertial frame are not simultaneous in another frame. | |||||||||||||||||||||||

26 | NO | Time.3 | Use the metric equation to calculate spacetime interval. | |||||||||||||||||||||||

27 | NO | Time.4 | I can explain the Twin Paradox using a spacetime diagram and a calculation of spacetime interval for each twin. | |||||||||||||||||||||||

28 | NO | Time.5 | I can calculate the number of muons remaining after x number of half-lives, and I can explain, using the metric equation, why fewer muons decay than is predicted by classical physics. | |||||||||||||||||||||||

29 | NO | Time.6 | I can calculate the proper time along a curved worldline traversed by an inertial clock moving at constant speed. | |||||||||||||||||||||||

30 | NO | Time.7 | I can derive and use the binomial approximation. | |||||||||||||||||||||||

31 | NO | Time.8 | I can describe and give examples to explain the relationship between coordinate time, spacetime interval, and proper time. | |||||||||||||||||||||||

32 | NO | R5 | LT | I can calculate (and compare) spacetime coordinates of an event for observers in different inertial frames. | ||||||||||||||||||||||

33 | NO | LT.1 | I can draw a two-observer diagram, with correctly sloped t' and x' axes and correctly calibrated scales, and can plot and read the spacetime coordinates of events. | |||||||||||||||||||||||

34 | NO | LT.2 | I can use a two-observer diagram to transform coordinates of an event from one frame to another frame and can use the two-observer diagram to solve problems and make predictions. | |||||||||||||||||||||||

35 | NO | LT.3 | I can use the Lorentz Transformation Equations (and Inverse Lorentz Transformation Equations) | |||||||||||||||||||||||

36 | NO | R6 | LC | I can calculate (and compare) length measurements for observers in different inertial frames. | ||||||||||||||||||||||

37 | NO | LC.1 | I can state an operational definition for the length of an object. | |||||||||||||||||||||||

38 | NO | LC.2 | I can use a two-observer diagram to determine the length of an object as measured in an Other frame. | |||||||||||||||||||||||

39 | NO | LC.3 | I can calculate the Lorentz contraction of an object | |||||||||||||||||||||||

40 | NO | R7 | V | I can calculate (and compare) velocity measurements for observers in different inertial frames. | ||||||||||||||||||||||

41 | NO | V.1 | I can use the Einstein velocity transformation equations to calculate the velocity of an object measured by an observer in an Other frame (or alternatively, the Home frame). | |||||||||||||||||||||||

42 | NO | R7 | Causality | I can determine whether two events are causally related. | ||||||||||||||||||||||

43 | NO | Causality.1 | I can determine whether the interval between events is timelike, lightlike, or spacelike and can describe how each interval is measured. | |||||||||||||||||||||||

44 | NO | Causality.2 | I can determine whether two events are causally related. | |||||||||||||||||||||||

45 | NO | Causality.3 | I understand The Cosmic Speed Limit and that it results from Causality being consistent with the Principle of Relativity | |||||||||||||||||||||||

46 | NO | R8, R9 | 4Mom | I can calculate mass, momentum, energy, and 4-momentum for a particle, and I know which quantities are invariant and which quantities are conserved. | ||||||||||||||||||||||

47 | NO | R9 | Cons | I can apply conservation of 4-momentum to a system. | ||||||||||||||||||||||

48 | NO | Cons.1 | I can solve conservation problems algebraically using 4-momentum vectors. | |||||||||||||||||||||||

49 | NO | Cons.2 | I can solve conservation problems using Energy-momentum diagrams. | |||||||||||||||||||||||

50 | NO | Q U A N T U M - M E C H A N I C S | Q1, Q2 | WS | I can describe the modes of a standing wave (whether transverse or longitudinal) whether it is fixed at both ends or free and fixed at each end. | |||||||||||||||||||||

51 | NO | WS.1 | I can derive equations Q1.12a and Q1.12b. | |||||||||||||||||||||||

52 | NO | WS.2 | I can state the superposition principle and can add waves graphically and algebraically. | |||||||||||||||||||||||

53 | NO | WS.3 | I can describe the shape of a reflected wave at an interface between two media or at a boundary with a fixed or free end. | |||||||||||||||||||||||

54 | NO | WS.4 | I can derive equation Q1.9 and can use it to describe the motion of various pieces of the medium for a standing wave. | |||||||||||||||||||||||

55 | NO | WS.5 | I can identify the boundary conditions and can calculate the frequency of the normal modes of a standing wave. | |||||||||||||||||||||||

56 | NO | Q3 | WI | I can use path difference to predict the interference of two sources of waves at a location. | ||||||||||||||||||||||

57 | NO | WI.1 | I can calculate the path difference at a given location from two sources and can predict whether it will result in total constructive interference or total destructive interference or something in between. | |||||||||||||||||||||||

58 | NO | WI.2 | I can calculate the locations of bright fringes in a double-slit experiment, and I can describe how fringe spacing depends on wavelength and slit spacing. | |||||||||||||||||||||||

59 | NO | WI.3 | I can calculate the locations of dark fringes in a single-slit experiment. | |||||||||||||||||||||||

60 | NO | WI.4 | I can use the Rayleigh Criterion to describe whether two point sources can be resolved. | |||||||||||||||||||||||

61 | NO | WI.5 | I can use a single-slit interference apparatus to determine the wavelength of a light source, including uncertainty. | |||||||||||||||||||||||

62 | NO | Q4,Q5 | WP | I can provide evidence for wave-particle duality and can apply a particle model or a wave model to a quanton, depending on the experiment. | ||||||||||||||||||||||

63 | NO | WP.1 | I can describe the photoelectric effect experiment and can use the photon model for light to explain the results, explain and interpret a graph of maximum kinetic energy vs. frequency, and make predictions. | |||||||||||||||||||||||

64 | NO | WP.2 | I can use a photoelectric effect apparatus to conduct an experiment to measure Planck's constant and the work function of the metal. | |||||||||||||||||||||||

65 | NO | WP.3 | I can calculate the energy of a photon and relate energy to frequency (or wavelength) of light. | |||||||||||||||||||||||

66 | NO | WP.4 | I can relate the number of photons per second incident on a surface and intensity of light for a given power of a light source. I also understand the difference between a point source of light and a beam of light in terms of how its intensity varies with distance. | |||||||||||||||||||||||

67 | NO | WP.5 | I can compute the deBroglie wavelength of a particle. | |||||||||||||||||||||||

68 | NO | WP.6 | I can apply conservation of energy to a charged particle traveling between two charged plates to compute the particle's deBroglie wavelength. | |||||||||||||||||||||||

69 | NO | WP.7 | I can interpret results of the double-slit experiment for particles by treating them as waves. | |||||||||||||||||||||||

70 | NO | WP.8 | I can compute the angles for constructive interference in the Davisson-Germer experiment. | |||||||||||||||||||||||

71 | NO | QA | MQ | I can use the mathematics needed to describe the state of a quanton, including complex algebra, the inner product of two complex vectors, probability, and normalization. | ||||||||||||||||||||||

72 | NO | MQ.1 | I can do complex algebra. | |||||||||||||||||||||||

73 | NO | MQ.2 | I can compute the intensity required to have a single photon traverse a given distance with a certain probability that there will only be one photon (at any instant) within the given range. | |||||||||||||||||||||||

74 | NO | MQ.3 | I can find the inner product of two complex vectors. | |||||||||||||||||||||||

75 | NO | MQ.4 | I can normalize a complex vector. | |||||||||||||||||||||||

76 | NO | Q6, Q7,Q9 | Qrules | I can recite and apply the "rules of the game" of quantum mechanics. | ||||||||||||||||||||||

77 | NO | Qrules.1 | I can look at a series of Stern-Gerlach devices and can predict the probability of an electron being aligned or anti-aligned with a given axis (x, y, z, theta) based on observations of various SG experiments. (Note: this involves understanding how making a measurement affects the electron's state and how recombining electrons of different spins affects the probability of a measurement.) | |||||||||||||||||||||||

78 | NO | Qrules.2 | I can write each of the "rules of the game" of quantum mechanics. | |||||||||||||||||||||||

79 | NO | Qrules.3 | I can apply the Outcome Probability rule to the spin of an electron. | |||||||||||||||||||||||

80 | NO | Qrules.4 | I can apply the Superposition rule to the spin of an electron. | |||||||||||||||||||||||

81 | NO | Qrules.5 | I can apply the Time-Evolution rule to the spin of an electron. | |||||||||||||||||||||||

82 | NO | Qrules.6 | Given a wavefunction, I can calculate the probability of measuring the position of an electron within a given range Delta x. | |||||||||||||||||||||||

83 | NO | Qrules.7 | Given a graph of a wavefunction, I can calculate the probability of measuring the position of an electron within a given range Delta x. | |||||||||||||||||||||||

84 | NO | Qrules.8 | I can calculate a normalization constant so that a wavefunction is normalized. | |||||||||||||||||||||||

85 | NO | Qrules.9 | I can identify whether a wavefunction is valid. | |||||||||||||||||||||||

86 | NO | Q10,Q11 | Qenergy | I can derive energy eigenvalues for various systems and can relate energy eigenvalues to a spectrum of photons emitted or absorbed. | ||||||||||||||||||||||

87 | NO | Qenergy.1 | I can derive the energy eigenvalues for a particle in a box and can sketch an energy diagram showing the eigenvalues. | |||||||||||||||||||||||

88 | NO | Qenergy.2 | I can derive the energy eigenvalues for an electron in a hydrogen atom using the Bohr model. | |||||||||||||||||||||||

89 | NO | Qenergy.3 | I can derive energy eigenvalues for other hydrogen-like systems. | |||||||||||||||||||||||

90 | NO | Qenergy.4 | I can use Conservation of Energy to calculate the wavelength (and energy) of a photon emitted or absorbed by a particle in a box. | |||||||||||||||||||||||

91 | NO | Qenergy.5 | I can sketch a spectrum diagram that shows the photon energies associated with certain transitions for a particle in a box. | |||||||||||||||||||||||

92 | NO | Qenergy.6 | I can use Conservation of Energy to calculate the wavelength (and energy) of a photon emitted or absorbed by a quantum oscillator. | |||||||||||||||||||||||

93 | NO | Qenergy.7 | I can derive the energy eigenvalues and the energies of photos emitted and absorbed for a single-electron atom. | |||||||||||||||||||||||

94 | NO | Q12 | TISEDer | I can derive the time-independent Schroedinger Equation (TISE) | ||||||||||||||||||||||

95 | NO | Not in book | TISE | I can demonstrate that a given wavefunction is consistent with the TISE, and I can solve the TISE for very simple potential functions. | ||||||||||||||||||||||

96 | NO | Q12 | Qpsi | I can sketch qualitatively accurate wavefunctions in the presence of various given potential functions. | ||||||||||||||||||||||

97 | NO | N U C L E A R | Q13, Q14 | Nuclei | I can use simple principles to estimate the sizes of nuclei and calculate their binding energies. | |||||||||||||||||||||

98 | NO | Q14 | Decay | I can describe the main types of radioactive decay and calculate decay rates. | ||||||||||||||||||||||

99 | NO | A S T R O | H1 | GR | I can state the the Principle of Equivalence and can use it to make predictions concerning the behavior of light and other objects in gravitational wells. I can derive the Schwarzschild radius of an object from first principles. I can calculate the gravitational redshift and time dilation expected for objects in gravitational wells. | handouts in class | ||||||||||||||||||||

100 | NO | H2 | DM | I can derive equations for the rotation curves of simple galaxies and justify the existence of dark matter using observations from the literature. | handouts in class |