| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||||||||||||||
2 | Crib Sheet for use with UniPile and UniSettle | |||||||||||||||||||||||||
3 | 4. Fit to Loading Test Load-movement Results - kN | 6. CPTu Soil Charts | ||||||||||||||||||||||||
4 | Bengt H. Fellenius, Dr.Tech., P.Eng. | |||||||||||||||||||||||||
5 | Ideally, the pile-head load-movement curve measured in a static loading test should turn to a continuing | When preparing the input for the soil layering, of course, a soil boring log is indispensable. When the | ||||||||||||||||||||||||
6 | Report to UniSoft Ltd., August 5, 2013 (updated August 2016) | movement for no increase of load, i.e., a plastic response defining the pile capacity of the test. Or even | boring log is combined with the records of a CPTu sounding, the value of the information is greatly enhanced, | |||||||||||||||||||||||
7 | more obvious, the curve should reach a peak value from which the load reduces with further movement. | because the CPTu records provide the numerical values that can be used either directly or assist in choosing | ||||||||||||||||||||||||
8 | In most actual cases, however, the load movement curve keeps increasing for increasing load. As the | the effective stress parameters. Moreover, the CPTu profile helps in detailing the soil layer delineation. | ||||||||||||||||||||||||
9 | This workbook contains the following seven template worksheets. | foundation design based on the results of the static loading test requires deriving a capacity value from the | The 7th sheet is intended to assist with the latter process. It is prepared for input of CPTu data | |||||||||||||||||||||||
10 | test results, several definitions on capacity determined from the load-movement curve have developed. | consisting of depth, cone stress, sleeve friction, and U2 pore pressure and it is assumed that the data are | ||||||||||||||||||||||||
11 | 1. Strength and Density Classification | available in a text file and can be clipped and pasted into the template. The SI-units for this input are | ||||||||||||||||||||||||
12 | 2. UniPhase SI-units and UniPhase English units | Some persons define the capacity at the applied load when the pile head movement equals 10% of the | MPa for the cone stress and kPa for the other three. Thus, if the data are in these units, no conversion is | |||||||||||||||||||||||
13 | 3 m and E conversions | pile diameter. This definition is not useful other than for very small pile diameters. It originates in a | necessary for the processing prepared in the sheet. If the data are in other units, the appropriate | |||||||||||||||||||||||
14 | 4. Fit to Loading Test - kN | misquote of Terzaghi's 1942 recommendation that capacity should not be evaluated before the pile toe has | conversions must be added to cells D9 through G9. | |||||||||||||||||||||||
15 | 5. Fit to Loading Test - % | moved 10% of the pile toe diameter. Because the maximum pile toe movement in most static loading tests | ||||||||||||||||||||||||
16 | 6. t-z and q-z functions | is usually no more than about 0.25 to 0.5 inch, that is, rarely more than about 15 mm, most of the times, | The cone data are plotted in three types of classification charts: the Eslami-Fellenius (1997), the Robertson | |||||||||||||||||||||||
17 | 7. CPTu Soil Charts | the mis-applied quote is not suitable. | and Campanella (1986), and the Robertson (1990) charts. The records shown in the sheet template are from an | |||||||||||||||||||||||
18 | actual cone sounding. However, data from three intermediate depths, where the soil type gradually changed from | |||||||||||||||||||||||||
19 | The spreadsheets are protected, but for a few cells, These are not locked because they are intended for user's | The sheet called Fit to Loading Test - kN, enables a user to input the load movement data from a static | one type to the next, have been removed to more clearly show the differences between the soil layers. | |||||||||||||||||||||||
20 | input. The not-protected cells have blue bold text and are shaded in yellow. No passward is used so the User is free to | loading test and to fit these data to seven analysis methods: the Chin-Kondner and the Decourt hyperbolic plots, | ||||||||||||||||||||||||
21 | unprotect the sheets. The following presents the background to the spreadsheets and explains how to use each sheet. | and the Hansen 80-% method, as well as the Ratio, Vander Veen (Exponential), Zhang, and Vijayvergiya methods. | It is an enjoyable exercise to compare the soil types determined from a set of cone data plotted in the three | |||||||||||||||||||||||
22 | The first three provides the means for determining a capacity from the fitted curve. The sheet also provides a means | graphs to each other and to the soil boring descriptions. | ||||||||||||||||||||||||
23 | to determine the Davison Offset Limit, usually a conservative value. | |||||||||||||||||||||||||
24 | 1. Strength and Density Classification | The user can overwrite the input columns (the four left-most columns) with own data and also add rows | ||||||||||||||||||||||||
25 | For each fitting method, two or three values are input as indicated by the blue bold, yellow-shaded text. | as needed to see the data plotted in the charts and profile diagrams. | ||||||||||||||||||||||||
26 | As evidenced in many geotechnical reports and publications, the use of common classifications of | The input values determine best fit of the theoretical curve to the test actual curve. The user selects the | ||||||||||||||||||||||||
27 | strength and density of soil and rock are often vague and, sometimes, even incorrect. The first | input guided by the graphs for each method. | The sheet is protected, but all graphs can be adjusted as to scale and format. Moreover, the protection | |||||||||||||||||||||||
28 | spreadsheet is intended for a "look-up" reference to a few primary classifications. Clay and rock are | has no password, so the user is free to unprotect and change any and everything. Before doing so | ||||||||||||||||||||||||
29 | considered cohesive material and have strength expressed in unit force—stress. Coarse-grained soil | The example test data are from an actual test that reached plunging mode failure. For such a test response, | however, make a back up of the sheet, so the original template can be restored if need be. | |||||||||||||||||||||||
30 | (sand, gravel, etc.) are not classified by strength, but by density, and, sometimes, by compressibility, the | there is little need for evaluating the capacity by any of the methods. However, where no "failure" value | ||||||||||||||||||||||||
31 | denser the soil, the less compressible it is (see Section 2). | is obvious by eye-balling the load-movement curve, one or other of the methods will be useful. | ||||||||||||||||||||||||
32 | ||||||||||||||||||||||||||
33 | 2. Compressibility Conversions — m and E | The sheet is protected, but all graphs can be adjusted as to scale and format. Moreover, the protection | ||||||||||||||||||||||||
34 | has no password, so the user is free to unprotect and change any and everything. Before doing so | |||||||||||||||||||||||||
35 | Characterizing soil compressibility by the Janbu modulus number, although mathematically equal to the | however, make a back up of the sheet, so the original template copy can be restored if need be. | ||||||||||||||||||||||||
36 | Cc-e0 and E-modulus approaches, is very advantageous because the modulus number characterizes the soil | |||||||||||||||||||||||||
37 | compressibility in a single, whole number ranging from the softest, most compressible soil, to the densest, least | 5. Fit to Loading Test - % | ||||||||||||||||||||||||
38 | compressible soil. In contrast, characterizing compressibility conventionally by the two independent | |||||||||||||||||||||||||
39 | parameters Cc and e0 turns the characterization into a difficult juggling act. | Sometimes results from a static loading test have been normalized to a perceived "capacity" assigned a | ||||||||||||||||||||||||
40 | value of 100 %. The sheet named "Fit to Loading Test - %" is prepared to let the user fit the set of theoretical curves | |||||||||||||||||||||||||
41 | The sheet includes a table copied from the Red Book (Fellenius 2012) containing typical and normally conservative | to the actual test data normalized to 100 % of the "perceived "capacity". | ||||||||||||||||||||||||
42 | modulus numbers. The numbers are intended for reference only. Below that table is a comparison tables that offers | |||||||||||||||||||||||||
43 | direct the conversion to "m" from the "Cc- e0" and vice versa. The additional information consists of excerpts from | Also this sheet is protected, but, again, no password is required to unprotect. | ||||||||||||||||||||||||
44 | the Red Book. My web site has a template for calculation of lab test results: "229 Compressibility&ModulusNumber.xls". | |||||||||||||||||||||||||
45 | In the back-analysis of data from a test on an instrumented pile, the input for the shaft response, i.e., the shaft | |||||||||||||||||||||||||
46 | 3. Phase Relations SI-units and English units | shear along an element of the pile and the pile toe movement are expressed as a t-z and a q-z function, | ||||||||||||||||||||||||
47 | respectively. This 6th sheet enables the user to fit six t-z/q-z functions to actual test data and to establish | |||||||||||||||||||||||||
48 | Frequently, when pursuing geotechnical calculations, one needs a quick means to determine a soil density | which function that is most relevant to measured load movement values. The sheet requires that the user normalizes | ||||||||||||||||||||||||
49 | value from knowing the water content, or from knowing the water content and density to determine the | the actual data so that the loads are expressed in percent of the value perceived as the relevant ultimate resistance. | ||||||||||||||||||||||||
50 | degree of saturation, or from knowing the density to determine the void ratio. The spreadsheet lists the | |||||||||||||||||||||||||
51 | phase system relations applicable to the calculations and displays three slightly different ways (I through IV) | Note, in using the Chin-Kondner (hyperbolic curve) t-z/q-z functions in UniPile, the assumed "target" resistance | ||||||||||||||||||||||||
52 | for doing the phase calculations. The user can choose between either a sheet in SI-units or in English units. | is the 100-% value as input for the soil layers. The inverse of the C1-value is the load at ultimate (infinite) movement. | ||||||||||||||||||||||||
53 | Each version also shows the values converted to the other system of units. The sheets are a development | |||||||||||||||||||||||||
54 | of UniSoft's former UniPhase program. | When using the Hansen function in fitting to results of a static loading test, it is often useful to change the input | ||||||||||||||||||||||||
55 | ultimate shaft resistance to a value of 125 % of the considered shaft shear and assign it (it becomes the "new" | |||||||||||||||||||||||||
56 | The UniSettle and UniPile software require the input of density and void ratio and the sheet simplifies the | 100-% value) to occur at a movement four times larger than the movement actually expected for the shaft shear. The | ||||||||||||||||||||||||
57 | calculation when one or the other is not directly known, saving the time to look it up. | original ultimate shaft shear is 80 % of the boosted shaft shear and it occurs at a quarter of the input movement. | ||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | The "TRUE" or "FALSE" cells show whether the calculated Degree of Saturation, S, is less or more than 100%. | Note, the t-z functions used for simulating theshaft shear response of the individual pile elements are not the same | ||||||||||||||||||||||||
60 | Unrealistic input can result a calculated "S" larger than 100 %, which is an unrealistic state. | as the t-s function that would fit the results of a simulation of the total shaft load-movement. | ||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||
62 | For additional comments on the use of t-z and q-z functions in evaluating the results of a static loading test, | |||||||||||||||||||||||||
63 | see the "Red Book" Chapter 8, Section 11. | |||||||||||||||||||||||||
64 | --------------------------------------------- | |||||||||||||||||||||||||
65 | Fellenius, B.H., 2013. Crib Sheet for use with UniPile and UniSettle. Report to UniSoft Ltd. (www.Fellenius.net). | |||||||||||||||||||||||||
66 | ||||||||||||||||||||||||||
67 | ||||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | ||||||||||||||||||||||||||
71 | ||||||||||||||||||||||||||
72 | ||||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 |