
Question Expected Answer Actual Answer Page Number and Heading

What is the structure of a ReqIF 
exchange document?

A ReqIF exchange document consists of a root element (ReqIF), a header 
(ReqIFHeader), the core content (ReqIFContent), and optionally tool-specific 
content extensions (ReqIFToolExtension). The core content includes 
specifications, requirements, and attributes that define the structure and details 
of the requirements being exchanged.

The structure of a ReqIF exchange document consists of a header, 
the core content, and other elements as defined in the ReqIF 
document. The core content is aggregated by a ReqIFContent 
element. The exchange process becomes a chain of requirements 
exchanges after the initial population of the exchange document. This 
could be a linear chain of partner organizations, or a “roundtrip” 
exchange terminating at the originating organization. Page 25, Clause 9.1

How are hierarchical structures of 
requirements represented in ReqIF?

Hierarchical structures are represented using SpecHierarchy elements. These 
elements allow requirements to be organized in a nested tree structure within a 
specification, supporting the definition of parent-child relationships between 
requirements.

In ReqIF, the hierarchical structure of a requirement specification is 
represented by SpecHierarchy elements. Page 32, Clause 10.4

What are the different types of 
AttributeDefinition elements in 
ReqIF?

The different types of AttributeDefinition elements include 
AttributeDefinitionSimple, AttributeDefinitionBoolean, AttributeDefinitionInteger, 
AttributeDefinitionReal, AttributeDefinitionString, AttributeDefinitionDate, and 
AttributeDefinitionEnumeration. Each type defines how the corresponding 
attribute values are structured and interpreted.

In ReqIF, the different types of AttributeDefinition elements are those 
that define the data types for attribute values. Each AttributeDefinition 
element is related to a specific data type (DatatypeDefinition element) 
and is used to ensure that the attribute values (AttributeValue 
elements) are valid against their related data types. Examples given 
include definitions for attributes like "priority," which may need to be 
an integer, and "status," which may need to be picked from a list of 
choices.

Page 31, Clause 10.4

How does ReqIF ensure the 
uniqueness of requirement 
elements?

ReqIF ensures uniqueness by assigning a globally unique identifier (ID) to each 
information element at the time of its creation. This identifier remains constant 
throughout the element's lifecycle, ensuring consistent identification across 
different tools and exchanges.

ReqIF ensures the uniqueness of requirement elements by using the 
Identifiable element, which provides a globally unique and lifetime 
immutable identity to ReqIF elements. The value of Identifiable::
identifier must be globally unique. Page 29, Clause 10.2

What role does the ReqIFHeader 
element play in a ReqIF document?

The ReqIFHeader element contains metadata relevant to the entire exchange 
document, such as the creation time, unique identifier, repository ID, tool ID, and 
version information. This metadata helps in managing and tracking the 
document throughout its lifecycle.

The ReqIFHeader element in a ReqIF document holds metadata 
relevant to the Exchange Document content. It is a mandatory 
component that links the Exchange Document header, which may 
include an optional comment associated with the Exchange 
Document as a whole. Page 26, Clause 9.2.3

What is the significance of the 
ReqIFToolExtension element?

The ReqIFToolExtension element allows the inclusion of tool-specific 
information that is not covered by the standard ReqIF schema. This enables 
customization and extension of the standard format to meet specific needs of 
different tools and organizations.

The ReqIFToolExtension element is significant because it allows for 
the optional inclusion of tool-specific information into the Exchange 
Document. This is particularly useful for representing instances of 
types, such as the View type found in requirements authoring tools, 
for which there is no predefined ReqIF information type. The format, 
type, and content of the information transferred in 
ReqIFToolExtension are not specified, which means that preservation 
and/or interpretation of this information is left to the tools that use it. Page 28, Clause 9.2.4

How does ReqIF handle binary file 
references within requirements?

Binary file references within requirements are handled using XHTML content in 
attributes. This allows the embedding of links to external files, ensuring that all 
necessary information is accessible and maintainable within the requirement 
specifications.

ReqIF handles binary file references within requirements by 
supporting the inclusion of objects that are external to the exchange 
XML document. These objects may have binary content, such as 
spreadsheets or presentation slides. Requirement authoring tools 
support referencing these binary files from within a document. 
However, it is noted that due to different capabilities of requirements 
authoring tools and ReqIF tools, some information may be lost during 
the exchange process. Page 11, Clause 7.2

What are SpecObject and 
SpecRelation elements in ReqIF?

SpecObject elements represent individual requirements, providing a unique ID 
and the core content of the requirement. SpecRelation elements represent 
relationships between requirements, supporting traceability and structuring of 
the requirements by defining how they are interconnected.

In ReqIF, SpecObject and SpecRelation elements serve distinct 
purposes:

SpecObject: This element is used to define individual requirements. It 
contains a set of attribute definitions that describe the properties of a 
requirement. These attribute definitions are inherited from the 
SpecObjectType, which allows multiple requirements to share the 
same set of attribute definitions, such as attribute names, default 
values, and data types.

SpecRelation: This element defines relations (links) between two 
SpecObject instances. It is used to establish connections between 
different requirements, indicating how they are related to each other. 
The attribute definitions for a SpecRelation element are contained in 
the SpecRelationType.

Both elements are part of the ReqIF package and are not abstract, 
meaning they can be instantiated and used directly in a ReqIF 
document. Page 30, Clause 10.3

How does ReqIF manage attribute 
data types for requirements?

ReqIF manages attribute data types through a set of predefined datatypes, such 
as Integer, Date, Real, Boolean, String, and Enumeration. Each attribute value 
is associated with a corresponding datatype definition, ensuring consistent 
interpretation and validation across different tools.

In ReqIF, attribute data types for requirements are managed by 
ensuring that each concrete attribute value (represented by the 
AttributeValue element) is valid against its related data type 
(represented by the DatatypeDefinition element). This relationship is 
established through an attribute definition (represented by the 
AttributeDefinition element). For example, a "priority" attribute may 
need to be an integer, while a "status" attribute may need to be 
selected from a list of choices. Page 34, Clause 10.5.1

What are the compliance points that 
a ReqIF implementation must 
match?

A ReqIF implementation must match all the elements and structures described 
in Clauses 9, 10, and 11, and support the high-level exchange protocol and 
document states defined in Clause 8. This includes recognizing and handling all 
specified data types, structures, and exchange scenarios.

A compliant implementation of the Requirements Interchange Format 
(ReqIF) must implement all elements described in Clauses 9, 10, and 
11. Additionally, it must recognize and support the high-level 
exchange protocol and associated exchange document states defined 
in Clause 8. Page 2, Clause 2

Other Questions:



Question Expected Answer Actual Answer Cosine Similarity

What is the structure of a ReqIF exchange 
document?

A ReqIF exchange document consists of a root 
element (ReqIF), a header (ReqIFHeader), the core 
content (ReqIFContent), and optionally tool-specific 
content extensions (ReqIFToolExtension). The core 
content includes specifications, requirements, and 
attributes that define the structure and details of the 
requirements being exchanged.

the structure of a ReqIF (Requirement Interchange Format) 
exchange document consists of:

SpecObject instances that are target objects of relations, 
referred to by the specRelations association.
Simple data types (Integer, Date, Real, Boolean, String).
A data type for enumeration values.
A data type for formatted content that can also reference 
external objects.
Additionally, ReqIF exchange documents may contain:

RelationGroup instances with sourceSpecification and 
targetSpecification associations, representing two 
specifications related to each other.
AttributeValueXHTML elements, which can be marked to allow 
importing tools to display a simplified version of the attribute 
value using an external HTML processor.
Tables as part of a requirement's content, where parts of the 
table represent requirements themselves (requiring setting an 
attribute on the root node and descendant SpecHierarchy 
nodes).
External objects referenced using the XHTML object element 
from the XHTML Object Module, with relevant XML attributes.
Note that this structure does not include information about tool 
extensions or specific requirements authoring tools mentioned 
in the context, as those are not directly related to the ReqIF 
exchange document's structure.

How are hierarchical structures of 
requirements represented in ReqIF?

Hierarchical structures are represented using 
SpecHierarchy elements. These elements allow 
requirements to be organized in a nested tree 
structure within a specification, supporting the 
definition of parent-child relationships between 
requirements.

 hierarchical structures of requirements are represented using 
the "SpecHierarchy" node. This is mentioned in the section 
describing tables as part of a requirement's content, where it 
says that this attribute needs to be set to true for the root node 
of the table hierarchy and all descendant SpecHierarchy 
nodes.

What are the different types of 
AttributeDefinition elements in ReqIF?

The different types of AttributeDefinition elements 
include AttributeDefinitionSimple, 
AttributeDefinitionBoolean, AttributeDefinitionInteger, 
AttributeDefinitionReal, AttributeDefinitionString, 
AttributeDefinitionDate, and 
AttributeDefinitionEnumeration. Each type defines how 
the corresponding attribute values are structured and 
interpreted.

there is no direct mention of different types of 
AttributeDefinition elements in ReqIF. The only mention of 
AttributeDefinition element is:

"...AttributeValue element) is related to its data type 
(DatatypeDefinition element) via an attribute definition 
(AttributeDefinition element)."

This implies that the AttributeDefinition element is used to 
relate an AttributeValue element to its corresponding 
DatatypeDefinition element, but it does not specify different 
types of AttributeDefinition elements

How does ReqIF ensure the uniqueness of 
requirement elements?

ReqIF ensures uniqueness by assigning a globally 
unique identifier (ID) to each information element at 
the time of its creation. This identifier remains constant 
throughout the element's lifecycle, ensuring consistent 
identification across different tools and exchanges.

there is no mention of how ReqIF ensures the uniqueness of 
requirement elements. The text only discusses various aspects 
of ReqIF, such as importing and exporting requirements, using 
XHTML elements, and referencing external objects. It does not 
provide any information about ensuring the uniqueness of 
requirement elements.

What role does the ReqIFHeader element 
play in a ReqIF document?

The ReqIFHeader element contains metadata relevant 
to the entire exchange document, such as the creation 
time, unique identifier, repository ID, tool ID, and 
version information. This metadata helps in managing 
and tracking the document throughout its lifecycle.

the ReqIFHeader element is not mentioned at all. Therefore, it 
cannot be determined what role the ReqIFHeader element 
plays in a ReqIF document. The context only refers to various 
concepts such as SpecObject instances, SpecHierarchy nodes, 
xhtml content, RelationGroup instances, AttributeValueXHTML 
elements, and integer values, but does not mention a 
ReqIFHeader element.

What is the significance of the 
ReqIFToolExtension element?

The ReqIFToolExtension element allows the inclusion 
of tool-specific information that is not covered by the 
standard ReqIF schema. This enables customization 
and extension of the standard format to meet specific 
needs of different tools and organizations.

there is no mention of the "ReqIFToolExtension" element. 
Therefore, it cannot be determined what its significance is from 
this information alone. The context only mentions "tool 
extensions" in general, referring to a concept offered by certain 
requirement authoring tools, but does not provide further 
details about the ReqIFToolExtension element specifically.

How does ReqIF handle binary file 
references within requirements?

Binary file references within requirements are handled 
using XHTML content in attributes. This allows the 
embedding of links to external files, ensuring that all 
necessary information is accessible and maintainable 
within the requirement specifications.

External objects are referenced binary objects that are usually 
not edited with the requirements authoring tool itself, but by 
accessing an external application (e.g., a Visio drawing or an 
Excel sheet). These objects can be referenced from within a 
formatted text. This suggests that ReqIF allows referencing 
binary files (such as Visio drawings or Excel sheets) within 
requirements, rather than embedding them directly.

What are SpecObject and SpecRelation 
elements in ReqIF?

SpecObject elements represent individual 
requirements, providing a unique ID and the core 
content of the requirement. SpecRelation elements 
represent relationships between requirements, 
supporting traceability and structuring of the 
requirements by defining how they are interconnected.

a SpecObject is an instance that is referred to by the 
specRelations association. This means that a SpecObject is a 
target object of relations.

Additionally, it can be inferred from the text that a SpecRelation 
refers to the specification that contains the SpecObject 
instances that are target objects of the relations (i.e., referred 
to by the specRelations association).

How does ReqIF manage attribute data 
types for requirements?

ReqIF manages attribute data types through a set of 
predefined datatypes, such as Integer, Date, Real, 
Boolean, String, and Enumeration. Each attribute 
value is associated with a corresponding datatype 
definition, ensuring consistent interpretation and 
validation across different tools.

Based on the provided context, there is no specific information 
about how ReqIF manages attribute data types for 
requirements. The text only discusses various features and 
specifications related to requirement authoring tools, exchange 
documents, and access restrictions. Therefore, I must conclude 
that this question cannot be answered based on the given 
context.



What are the compliance points that a 
ReqIF implementation must match?

A ReqIF implementation must match all the elements 
and structures described in Clauses 9, 10, and 11, and 
support the high-level exchange protocol and 
document states defined in Clause 8. This includes 
recognizing and handling all specified data types, 
structures, and exchange scenarios.

it is mentioned in sub-clause 9.2.4 that ReqIF offers the 
concept of tool extensions. This implies that a ReqIF 
implementation must match the standard's requirements for 
tool extensions.

Additionally, it is stated that ReqIF allows specifying access 
restrictions for certain information elements and supports the 
use of formatted text (bold, italic, underlined, strikethrough) in 
attribute values of requirements. This suggests that a ReqIF 
implementation must also match these requirements.

Furthermore, the context highlights the importance of ReqIF's 
ability to support exchange processes where partners have 
different rights to modify information. This implies that a ReqIF 
implementation must provide mechanisms for controlling 
access and modification rights.

Finally, it is mentioned that ReqIF specifies and describes the 
different kinds of information types as well as their relationships 
to each other. A ReqIF implementation must match these 
specifications and descriptions.

Therefore, the compliance points that a ReqIF implementation 
must match are:

Support for tool extensions
Allowance for access restrictions on certain information 
elements
Support for formatted text (bold, italic, underlined, 
strikethrough) in attribute values of requirements
Provision for controlling access and modification rights
Compliance with the specifications and descriptions of different 
information types and their relationships to each other.




