| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | "JOIST" --- STEEL JOIST ANALYSIS | |||||||||||||||||||||||||
2 | ||||||||||||||||||||||||||
3 | Program Description: | |||||||||||||||||||||||||
4 | ||||||||||||||||||||||||||
5 | "JOIST" is a spreadsheet program written in MS-Excel for the purpose of analysis of steel joists considered as | |||||||||||||||||||||||||
6 | simple-span beams subjected to virtually any type of loading configuration. Specifically, beam end reactions as well | |||||||||||||||||||||||||
7 | as the maximum moments and deflections are calculated. Plots of both the shear and moment diagrams are | |||||||||||||||||||||||||
8 | produced, as well as a tabulation of the shear, moment, slope, and deflection for the joist span. There are two | |||||||||||||||||||||||||
9 | worksheets for selecting K-series and LH-series joists, and 2 worksheets which are the SJI Standard Load Tables. | |||||||||||||||||||||||||
10 | ||||||||||||||||||||||||||
11 | This program is a workbook consisting of eight (8) worksheets, described as follows: | |||||||||||||||||||||||||
12 | ||||||||||||||||||||||||||
13 | Worksheet Name | Description | ||||||||||||||||||||||||
14 | Doc | This documentation sheet | ||||||||||||||||||||||||
15 | General Joist Analysis | General standard joist analysis for steel joists for non-standard loads | ||||||||||||||||||||||||
16 | K-Joist Analysis | Analysis for typical, standard loaded, open-web K-series steel joists | ||||||||||||||||||||||||
17 | K-Joist Table | Standard (SJI) load table for open-web K-series steel joists | ||||||||||||||||||||||||
18 | KCS-Joist Analysis | Analysis for non-standard loaded, open-web KCS-series steel joists | ||||||||||||||||||||||||
19 | KCS-Joist Table | Load table for open-web KCS-series steel joists | ||||||||||||||||||||||||
20 | LH-Joist Analysis | Analysis for typical, standard loaded, longspan LH-series steel joists | ||||||||||||||||||||||||
21 | LH-Joist Table | Standard (SJI) load table for longspan LH-series steel joists | ||||||||||||||||||||||||
22 | ||||||||||||||||||||||||||
23 | ||||||||||||||||||||||||||
24 | Program Assumptions and Limitations: | |||||||||||||||||||||||||
25 | ||||||||||||||||||||||||||
26 | 1. For the "General Joist Analysis" worksheet, the following reference was used in the development of this program: | |||||||||||||||||||||||||
27 | "Modern Formulas for Statics and Dynamics, A Stress-and-Strain Approach" | |||||||||||||||||||||||||
28 | by Walter D. Pilkey and Pin Yu Chang, McGraw-Hill Book Company (1978), pages 11 to 21. | |||||||||||||||||||||||||
29 | 2. The "General Joist Analysis" worksheet on the joist span will handle a full length uniform load and up to eight (8) | |||||||||||||||||||||||||
30 | partial uniform, triangular, or trapezoidal loads, up to fifteen (15) point loads, and up to four (4) applied moments. | |||||||||||||||||||||||||
31 | 3. The "General Joist Analysis" worksheet will calculate the joist end vertical reactions, the maximum positive | |||||||||||||||||||||||||
32 | moment and negative moment (if applicable), and the maximum negative deflection and positive deflection (if | |||||||||||||||||||||||||
33 | applicable). The calculated values for the end reactions and maximum moments and deflections are determined | |||||||||||||||||||||||||
34 | from dividing the joist into fifty (50) equal segments with fifty-one (51) points, and including all of the point load | |||||||||||||||||||||||||
35 | and applied moment locations as well. (Note: the actual point of maximum moment occurs where the shear = 0, | |||||||||||||||||||||||||
36 | or passes through zero, while the actual point of maximum deflection is where the slope = 0.) | |||||||||||||||||||||||||
37 | 4. In the "General Joist Analysis" worksheet the user is given the ability to input two (2) specific locations from the | |||||||||||||||||||||||||
38 | left end of the joist to calculate the shear, moment, slope, deflection, as well as the stress ratios for shear and | |||||||||||||||||||||||||
39 | moment. This should be utilized when the maximum moment does not occur at the start or end of a segment. | |||||||||||||||||||||||||
40 | 5. In the "General Joist Analysis" worksheet, the plots of the shear and moment diagrams as well as the displayed | |||||||||||||||||||||||||
41 | tabulation of shear, moment, slope, and deflection are based on the joist span being divided up into fifty (50) | |||||||||||||||||||||||||
42 | equal segments with-one (51) points. | |||||||||||||||||||||||||
43 | 6. The "General Joist Analysis" worksheet will enable the user to either analyze an existing joist for new loads or | |||||||||||||||||||||||||
44 | determine the required total equivalent uniform load to be used to size a new joist. | |||||||||||||||||||||||||
45 | 7. The "General Joist Analysis" worksheet only analyzes the joist "as a whole" and does not perform checks on the | |||||||||||||||||||||||||
46 | individual components. | |||||||||||||||||||||||||
47 | 8. In the "General Joist Analysis" worksheet, the deflections calculated include a 15% increase above the values | |||||||||||||||||||||||||
48 | calculated using traditional "simple-beam" flexure to more closely match actual test results obtained by SJI. | |||||||||||||||||||||||||
49 | 9. For the "K-Joist Analysis" and "LH-Joist Analysis" worksheets, the Steel Joist Institute (SJI) Standard Load Table | |||||||||||||||||||||||||
50 | as well the "Recommended Code of Standard Practice for Steel Joists and Joist Girders" are used. The | |||||||||||||||||||||||||
51 | Standard Load Tables are built into each of these two analysis worksheets. The two worksheets will evaluate a | |||||||||||||||||||||||||
52 | user selected joist size, as well as display up to a maximum of 15 of the lightest joist sizes that are satisfactory | |||||||||||||||||||||||||
53 | for the loading and deflection criteria specified by the user. The bridging requirements are also determined. | |||||||||||||||||||||||||
54 | 10. This program contains numerous “comment boxes” which contain a wide variety of information including | |||||||||||||||||||||||||
55 | explanations of input or output items, equations used, data tables, etc. (Note: presence of a “comment box” | |||||||||||||||||||||||||
56 | is denoted by a “red triangle” in the upper right-hand corner of a cell. Merely move the mouse pointer to the | |||||||||||||||||||||||||
57 | desired cell to view the contents of that particular "comment box".) | |||||||||||||||||||||||||
58 | ||||||||||||||||||||||||||
59 | Formulas Used to Determine Shear, Moment, Slope, and Deflection in Simple-Span Joists | |||||||||||||||||||||||||
60 | ||||||||||||||||||||||||||
61 | For Uniform or Distributed Loads: | |||||||||||||||||||||||||
62 | ||||||||||||||||||||||||||
63 | Loading functions for each uniform or distributed load evaluated at distance x = L from left end of joist: | |||||||||||||||||||||||||
64 | FvL = | -wb*(L-b-(L-e)) + -1/2*(we-wb)/(e-b)*((L-b)^2-(L-e)^2)+(we-wb)*(L-e) | ||||||||||||||||||||||||
65 | FmL = | -wb/2*((L-b)^2-(L-e)^2) + -1/6*(we-wb)/(e-b)*((L-b)^3-(L-e)^3)+(we-wb)/2*(L-e)^2 | ||||||||||||||||||||||||
66 | FqL = | -wb/(6*E*I)*((L-b)^3-(L-e)^3) + -1/(24*E*I)*(we-wb)/(e-b)*((L-b)^4-(L-e)^4)+(we-wb)/(6*E*I)*(L-e)^3 | ||||||||||||||||||||||||
67 | FDL = | -wb/(24*E*I)*((L-b)^4-(L-e)^4) + -1/(120*E*I)*(we-wb)/(e-b)*((L-b)^5-(L-e)^5)+(we-wb)/(24*E*I)*(L-e)^4 | ||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||
69 | Loading functions for each uniform or distributed load evaluated at distance = x from left end of joist: | |||||||||||||||||||||||||
70 | If x >= e: | |||||||||||||||||||||||||
71 | Fvx = | -wb*(x-b-(x-e)) + -1/2*(we-wb)/(e-b)*((x-b)^2-(x-e)^2)+(we-wb)*(x-e) | ||||||||||||||||||||||||
72 | Fmx = | -wb/2*((x-b)^2-(x-e)^2) + -1/6*(we-wb)/(e-b)*((x-b)^3-(x-e)^3)+(we-wb)/2*(x-e)^2 | ||||||||||||||||||||||||
73 | Fqx = | -wb/(6*E*I)*((x-b)^3-(x-e)^3) + -1/(24*E*I)*(we-wb)/(e-b)*((x-b)^4-(x-e)^4)+(we-wb)/(6*E*I)*(x-e)^3 | ||||||||||||||||||||||||
74 | FDx = | -wb/(24*E*I)*((x-b)^4-(x-e)^4) + -1/(120*E*I)*(we-wb)/(e-b)*((x-b)^5-(x-e)^5)+(we-wb)/(24*E*I)*(x-e)^4 | ||||||||||||||||||||||||
75 | else if x >= b: | |||||||||||||||||||||||||
76 | Fvx = | -wb*(x-b) + -1/2*(we-wb)/(e-b)*(x-b)^2 | else: | Fvx = | 0 | |||||||||||||||||||||
77 | Fmx = | -wb/2*(x-b)^2 + -1/6*(we-wb)/(e-b)*(x-b)^3-(x-e)^3 | else: | Fmx = | 0 | |||||||||||||||||||||
78 | Fqx = | -wb/(6*E*I)*(x-b)^3 + -1/(24*E*I)*(we-wb)/(e-b)*(x-b)^4 | else: | Fqx = | 0 | |||||||||||||||||||||
79 | FDx = | -wb/(24*E*I)*(x-b)^4 + -1/(120*E*I)*(we-wb)/(e-b)*(x-b)^5 | else: | FDx = | 0 | |||||||||||||||||||||
80 | ||||||||||||||||||||||||||
81 | For Point Loads: | |||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | Loading functions for each point load evaluated at distance x = L from left end of joist: | |||||||||||||||||||||||||
84 | FvL = | -P | ||||||||||||||||||||||||
85 | FmL = | -P*(L-a) | ||||||||||||||||||||||||
86 | FqL = | -P*(L-a)^2/(2*E*I) | ||||||||||||||||||||||||
87 | FDL = | P*(L-a)^3/(6*E*I) | ||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | Loading functions for each point load evaluated at distance = x from left end of beam: | |||||||||||||||||||||||||
90 | If x > a: | |||||||||||||||||||||||||
91 | Fvx = | -P | else: | Fvx = | 0 | |||||||||||||||||||||
92 | Fmx = | -P*(x-a) | else: | Fmx = | 0 | |||||||||||||||||||||
93 | Fqx = | -P*(x-a)^2/(2*E*I) | else: | Fqx = | 0 | |||||||||||||||||||||
94 | FDx = | P*(x-a)^3/(6*E*I) | else: | FDx = | 0 | |||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | For Applied Moments: | |||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | Loading functions for each applied moment evaluated at distance x = L from left end of joist: | |||||||||||||||||||||||||
99 | FvL = | 0 | ||||||||||||||||||||||||
100 | FmL = | -M | ||||||||||||||||||||||||