Becoming Math Chapter Prompts
The version of the browser you are using is no longer supported. Please upgrade to a supported browser.Dismiss

ABCDEFGHIJKLMNOPQRSTUVWXYZAA
1
week ofchapterprompt
2
9/28n/a: Dine & DiscussWelcome to our online book study. Please take a moment to introduce yourself to the group.
Where do you work?
What education level or group do you work with?
What is your greatest hope for this book study?
3
11/21: Breaking the Cycle1. Take a look at the word cloud generated by dine & discuss participants. In what ways is it similar to or different from the mathematicians' word cloud (page 5)?
2. Identify one word in the mathematcians' word cloud on page 5 that isn't currently part of your math classroom and explain how you can incorporate it this year.
4
11/92: What Do Mathematicians Do?1. What have you observed about how students use the phrase "This is easy" in your classroom? What has been the effect?
2. Have a conversation with your students around words such as easy, hard, fast, slow, right, wrong, or around the question, What does it mean to be good at math? Record the conversation and transcibe or summarize it. What did you learn?
5
11/163: Mathematicians Take Risks1. Have you ever complained that your students won't try (page 32)? What patterns have you noticed? What strategies have you tried? Do you have any new ideas to try after reading this chapter?
2. Choose an item or two out of the Make It Safe table on pages 51-53 that resonate with you. Try it in your classroom and then write about what you learned.
6
11/304: Mathematicians Make Mistakes1. Consider the paragraph about keeping your face, body language, voice, and words neutral (page 63). How do kids pick up cues from you? How can you stay encouraging, honest, and neutral all at the same time?
2. Re-read Julie's approach to opening questions (page 63). Next time you start a discussion with your students, ask a thought-oriented question rather than an answer-focused one. What happened?
7
12/75: Mathematicians Are Precise1. Consider this list of related but distinct ideas around precision (Pages 80-81). Which aspects do your students currently have? Which ones do your students need to work on most? What are some ideas you have to help them work on these? 2. Jen Muhammad (91-93) externalizes the internal voice she wants students to use. How might you try this strategy in your style? Think about it, try it, and write your reflection.
8
12/146: Mathematicians Rise to a Challenge1. Write about the section "Productive Struggle, Be Less Helpful, and Special Education." Does this resonate with your experiences? 2. Review Papert's image of low-threshold, high-ceiling problems. Choose a problem from an upcoming lesson and talk about how to lower its threshold and raise its ceiling. What changes did you make? Once you're done, think about the same problem in terms of open or closed beginnings, middles, and ends, as Dan Meyer described. Any further changes?
9
1/47: Mathematicians Ask Questions1. In the section on standards (169), Debbie never wrote an objective on the board, yet her students engaged in rich exploration of the standards. In your teaching context, how might you give students opportunities to uncover the standards through inquiry? 2. Choose a rich problem from an upcoming lesson and plan how you might give studnets the opportunity to springboard off their first solution. The questions "What new questions do you have?" or "What are you wondering about now?" might help. What new questions did students generate or what new questions do you think they may generate?
10
1/118: Mathematicians Connect Ideas1. How does Emily's story (194-200) make you think about the role of connections in students' proficiency, or lack thereof? 2. Think about models you teach. Do your students currently see connections among them? What might you take from Becky's Example (191-193)? Try it, what did you learn?
11
1/189: Mathematicians Use Intuition1. Discuss the opening passage about intution. What caught your ear? Any surprises? 2. Choose seven questions (224-226), one from each category, and write them somewhere you'll see them while you teach. What questions did you choose? Try using them in your teaching for a week. What did you notice? Share.
12
1/2510: Mathematicians Reason1. What do you make of the argument that counterintuitive or paradoxical math is a motivator for proof?
2. Choose a strategy (Choral Counting, Open Number Sentences, True/False Number Sentences, Always/Sometimes/Never) and try it out. Plan with colleagues, if possible. Be deliberate about your choices; make sure they reflect your mathematical goal for the lesson. How did it go? Share.
13
2/111: Mathematicians Prove
14
2/812: Mathematicians Work Together and Alone
15
2/1513: "Favorable Conditions" for All Math Students
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100