A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Annotator (Date) | Annotation Date | Paper Title | ||||||||||||||||||||||||
2 | Keith H. | 6/18/2021 | A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support | ||||||||||||||||||||||||
3 | A Computational Linguistic Study of Personal Recovery in Bipolar Disorder | ||||||||||||||||||||||||||
4 | A Corpus Linguistic Analysis of Public Reddit Blog Posts on Non-Suicidal Self-Injury | ||||||||||||||||||||||||||
5 | Adapting Coreference Resolution for Processing Violent Death Narratives | ||||||||||||||||||||||||||
6 | Adapting Deep Learning Methods for Mental Health Prediction on Social Media | ||||||||||||||||||||||||||
7 | Affective Behavior Analysis of On-line User Interactions: Are On-line Support Groups more Therapeutic than Twitter? | ||||||||||||||||||||||||||
8 | ALONE: A Dataset for Toxic Behavior among Adolescents on Twitter | ||||||||||||||||||||||||||
9 | Analyzing big data in social media: Text and network analyses of an eating disorder forum | ||||||||||||||||||||||||||
10 | Analyzing Machine Learning Models that Predict Mental Illnesses from Social Media Text | ||||||||||||||||||||||||||
11 | An analysis of stigma and suicide literacy in responses to suicides broadcast on social media | ||||||||||||||||||||||||||
12 | An emotion and cognitive based analysis of mental health disorders from social media | ||||||||||||||||||||||||||
13 | A Novel Sentiment Analysis Engine for Preliminary Depression Status Estimation on Social Media | ||||||||||||||||||||||||||
14 | A novel surveillance approach for disaster mental health | ||||||||||||||||||||||||||
15 | A Prioritization Model for Suicidality Risk Assessment | ||||||||||||||||||||||||||
16 | A Social Media Based Examination of the Effects of Counseling Recommendations after Student Deaths on College Campuses | ||||||||||||||||||||||||||
17 | A Social Media Study on Mental Health Status Transitions Surrounding Psychiatric Hospitalizations | ||||||||||||||||||||||||||
18 | A Social Media Study on the Effects of Psychiatric Medication Use | ||||||||||||||||||||||||||
19 | Assessing mental health signals among sexual and gender minorities using Twitter data | ||||||||||||||||||||||||||
20 | Assessing population-level symptoms of anxiety, depression, and suicide risk in real time using NLP applied to social media data | ||||||||||||||||||||||||||
21 | Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study | ||||||||||||||||||||||||||
22 | Assessment of the Mental Health Status of Social Media Users during the Outbreak of COVID-19 | ||||||||||||||||||||||||||
23 | A text classification framework for simple and effective early depression detection over social media streams | ||||||||||||||||||||||||||
24 | Automatic Detection and Classification of Cognitive Distortions in Mental Health Text | ||||||||||||||||||||||||||
25 | Automatic Detection and Prediction and Psychiatric Hospitalizations From Social Media Posts | ||||||||||||||||||||||||||
26 | Being (In)Visible: Privacy, Transparency, and Disclosure in the Self-Management of Bipolar Disorder | ||||||||||||||||||||||||||
27 | Benefits and Challenges for Social Media Users on the Autism Spectrum | ||||||||||||||||||||||||||
28 | BLISS: An Agent for Collecting Spoken Dialogue data about Health and Well-being | ||||||||||||||||||||||||||
29 | Bursts of Activity: Temporal Patterns of Help-Seeking and Support in Online Mental Health Forums | ||||||||||||||||||||||||||
30 | "Can I Not Be Suicidal on a Sunday?": Understanding Technology-Mediated Pathways to Mental Health Support | ||||||||||||||||||||||||||
31 | Can language use in social media help in the treatment of severe mental illness? | ||||||||||||||||||||||||||
32 | Can We Assess Mental Health Through Social Media and Smart Devices? Addressing Bias in Methodology and Evaluation? | ||||||||||||||||||||||||||
33 | Can x2vec Save Lives? Integrating Graph and Language Embeddings for Automatic Mental Health Classification | ||||||||||||||||||||||||||
34 | Capturing social media expressions during the COVID-19 pandemic in Argentina and forecasting mental health and emotions | ||||||||||||||||||||||||||
35 | Causal Factors of Effective Psychosocial Outcomes in Online Mental Health Communities | ||||||||||||||||||||||||||
36 | CEASE, a Corpus of Emotion Annotated Suicide notes in English | ||||||||||||||||||||||||||
37 | Characterizing Anxiety Disorders with Online Social and Interactional Networks | ||||||||||||||||||||||||||
38 | Characterizing Audience Engagement and Assessing Its Impact on Social Media Disclosures of Mental Illnesses | ||||||||||||||||||||||||||
39 | Characterizing Depression Issues on Sina Weibo | ||||||||||||||||||||||||||
40 | #anorexia, #anarexia, #anarexyia: Characterizing Online Community Practices with Orthographic Variation | ||||||||||||||||||||||||||
41 | Chinese Public's Attention to the COVID-19 Epidemic on Social Media: Observational Descriptive Study | ||||||||||||||||||||||||||
42 | Classification of mental illnesses on social media using RoBERTa | ||||||||||||||||||||||||||
43 | Cluster analysis of Online Mental Health Discourse using Topic-Infused Deep Contextualized Representations | ||||||||||||||||||||||||||
44 | Community-level Research on Suicidality Prediction in a Secure Environment: Overview of the CLPsych 2021 Shared Task | ||||||||||||||||||||||||||
45 | Comparing Suicide Risk Insights derived from Clinical and Social Media data | ||||||||||||||||||||||||||
46 | Conversational topics of social media messages associated with state-level mental distress rates | ||||||||||||||||||||||||||
47 | COVID-19: Detecting Depression Signals during Stay-At-Home Period | ||||||||||||||||||||||||||
48 | COVID-19 and Mental Health/Substance Use Disorders on Reddit: A Longitudinal Study | ||||||||||||||||||||||||||
49 | Deep learning for language understanding of mental health concepts derived from Cognitive Behavioural Therapy | ||||||||||||||||||||||||||
50 | Demonstrating the Reliability of Self-Annotated Emotion Data | ||||||||||||||||||||||||||
51 | Depressed individuals express more distorted thinking on social media | ||||||||||||||||||||||||||
52 | Depression Intensity Estimation via Social Media: A Deep Learning Approach | ||||||||||||||||||||||||||
53 | DepressionNet: A Novel Summarization Boosted Deep Framework for Depression Detection on Social Media | ||||||||||||||||||||||||||
54 | Depression presentations, stigma, and mental health literacy: A critical review and YouTube content analysis | ||||||||||||||||||||||||||
55 | Depression Status Estimation by Deep Learning based Hybrid Multi-Modal Fusion Model | ||||||||||||||||||||||||||
56 | Designing Mental Health Technologies that support the Social Ecosystem of College Students | ||||||||||||||||||||||||||
57 | Designing Microblog Direct Messages to Engage Social Media Users With Suicide Ideation: Interview and Survey Study on Weibo | ||||||||||||||||||||||||||
58 | Detecting and Characterizing Eating-Disorder Communities on Social Media | ||||||||||||||||||||||||||
59 | Detecting and Characterizing Trends in Online Mental Health Discussions | ||||||||||||||||||||||||||
60 | Detecting Cognitive Distortions from Patient-Therapist Interactions | ||||||||||||||||||||||||||
61 | Detecting Community Depression Dynmaics Due to COVID-19 Pandemic in Australia | ||||||||||||||||||||||||||
62 | Detecting depression stigma on social media: A linguistic analysis | ||||||||||||||||||||||||||
63 | Detecting Early Onset of Depression from Social Media Text using Learning Confidence Scores | ||||||||||||||||||||||||||
64 | Detecting Individuals with Depressive Disorder from Personal Google Search and YouTube History Logs | ||||||||||||||||||||||||||
65 | Detecting Mental Disorders in Social Media Through Emotional Patterns -- The case of Anorexia and Depression | ||||||||||||||||||||||||||
66 | Detection and Classification of mental illnesses on social media using RoBERTa | ||||||||||||||||||||||||||
67 | Detection of Depression-Related Posts in Reddit Social Media Forum | ||||||||||||||||||||||||||
68 | Detection of Mental Illness Risk on Social Media through Multi-level SVMs | ||||||||||||||||||||||||||
69 | Development of a Corpus Annotated with Medications and their Attributes in Psychiatric Health Records | ||||||||||||||||||||||||||
70 | Development of a Japanese Personality Dictionary based on Psychological Methods | ||||||||||||||||||||||||||
71 | Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities | ||||||||||||||||||||||||||
72 | Early Mental Health Risk Assessment through Writing Styles, Topics and Neural Models | ||||||||||||||||||||||||||
73 | Emotion-Infused Models for Explainable Psychological Stress Detection | ||||||||||||||||||||||||||
74 | Emotional and Linguistic Cues of Depression from Social Media | ||||||||||||||||||||||||||
75 | EmpathBERT: A BERT-based Framework for Demographic-aware Empathy Prediction | ||||||||||||||||||||||||||
76 | Empirical Evaluation of Pre-trained Transformers for Human-Level NLP: The Role of Sample Size and Dimensionality | ||||||||||||||||||||||||||
77 | Engagement Patters of Peer-to-Peer Interactions on Mental Health Platforms | ||||||||||||||||||||||||||
78 | eRisk 2020: Self-harm and Depression Challenges | ||||||||||||||||||||||||||
79 | Estimating the effect of COVID-19 on mental health: Linguistic indicators of depression during a global pandemic | ||||||||||||||||||||||||||
80 | Evaluating the predictability of medical conditions from social media posts | ||||||||||||||||||||||||||
81 | Examining thematic similarity, difference, and membership in three online mental health communities from reddit: A text mining and visualization approach | ||||||||||||||||||||||||||
82 | Examing the scope and patterns of deliberate self-injurious cutting content in popular social media | ||||||||||||||||||||||||||
83 | Explainable Multi-class Classification of the CAMH COVID-19 Mental Health Data | ||||||||||||||||||||||||||
84 | Exploring the Effects of Technological Writing Assistance for Support Providers in Online Mental Health Community | ||||||||||||||||||||||||||
85 | Extracting psychiatric stressors for suicide from social media using deep learning | ||||||||||||||||||||||||||
86 | Facebook Social Media for Depression Detection in the Thai Community | ||||||||||||||||||||||||||
87 | Feature Engineering for Depression Detection in Social Media | ||||||||||||||||||||||||||
88 | Feature Studies to Inform the Classification of Depressive Symptoms from Twitter Data for Population Health | ||||||||||||||||||||||||||
89 | Forecasting mental health and emotions based on social media expressions during the COVID-19 pandemic | ||||||||||||||||||||||||||
90 | Fusing Visual, Textual and Connectivity Clues for Studying Mental Health | ||||||||||||||||||||||||||
91 | Harnessing Reddit to Understand the Written-Communication Challenges Experienced by Individuals With Mental Health Disorders: Analysis of Texts From Mental Health Communities | ||||||||||||||||||||||||||
92 | Hashtag Healthcare: From Tweets to Mental Health Journals Using Deep Transfer Learning | ||||||||||||||||||||||||||
93 | Hebrew Psychological Lexicons | ||||||||||||||||||||||||||
94 | How do you #relax when you're #stressed? A content analysis and infodemiology study of stress-related tweets | ||||||||||||||||||||||||||
95 | How User Condition Affects Community Dynamics in a Forum on Autism | ||||||||||||||||||||||||||
96 | Identifying Depressive Symptoms from Tweets: Figurative Language Enabled Multitask Learning Framework | ||||||||||||||||||||||||||
97 | Identifying emerging mental illness utilizing search engine activity: A feasibility study | ||||||||||||||||||||||||||
98 | Identifying Medical Self-Disclosure in Online Communities | ||||||||||||||||||||||||||
99 | Identifying Psychotic Symptoms and Predicting Relapse Through Social Media | ||||||||||||||||||||||||||
100 | Identifying substance use risk based on deep neural networks and Instagram social media data |