A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | TABLE 1: Materials Carbon Data | ||||||||||||||||||||||||||||||
2 | Table 1 provides all of the fundamental carbon data used in the Carbon Conscience application. Within this table, there sections. The first, Table 1a: Global Modifiers, is a table of factors that can modify the carbon footprints of elements within a given land use. For example, an overall Installation contingency is added as a factor to account for the work of installation that is not accounted for in typical A1-A3 LCA or EPD reports. Other modifiers include cement substitutions and inclusion of recycled content. Table 1b includes transportation options data. Table 1c includes the embodied and stored carbon for landscape materials, based on a broad literature review of academic LCAs, industry resources, and EPDs. Table 1d provides a summary of potential embodied carbon for nursery materials, derived from a very limited dataset of academic studies, and Table 1e provides the results of the carbon sequestration and storage models from Table 5. Together, the collection of data in Table 1 represents the primary input data for Table 2, Site Elements Data. | ||||||||||||||||||||||||||||||
3 | |||||||||||||||||||||||||||||||
4 | Table 1a: Global Modifiers Tables | ||||||||||||||||||||||||||||||
5 | Modifier # | Category | Modify Factors | Low Carbon % | Average Carbon % | High Carbon % | Assumptions / Notes | Citations | |||||||||||||||||||||||
6 | 1.1 | Installation Contingency | Baseline: Installation using diesel and nonrenewable energy sources. (Typical) | 101% | 102.5% | 104% | General note: Carbon Factor references are referring to cradle to gate (A1-A3), and do not include transportation or on-site fabrication and workmanship. A3 (Transportation) is calculated by distanceXmodeXmass below. A5 is accounted for by this contingency. RESEARCH OPPORTUNITY: Neet more A5 data for landscape specific projects. | High range: 4% (from WBLCAs) (Puettmann et al., 2021); Low range: 1% (From WBLCAs) (Kumanayake & Luo, 2018). | |||||||||||||||||||||||
7 | 2.1 | Cement Type (Typical) | Baseline: Cement (Type 1 or 2) (Typical) | 100% | 100% | 100% | Assume typical carbon factors hold true. | ||||||||||||||||||||||||
8 | 2.2 | Cement Type (SCM) | Cement (Type IP) | 75% | 80% | 85% | 15-25 % reduction, assume 15% from high baseline, 25% from low | (Cannon et al., 2021), (Lehne & Preston, 2018), (FHA, 2011) | |||||||||||||||||||||||
9 | 2.3 | Cement Type (SCM) | Cement (Type IL) | 85% | 88% | 90% | 10-15 % reduction, assume 10% from high baseline, 15% from low | (Cannon et al., 2021), (Lehne & Preston, 2018), (FHA, 2011) | |||||||||||||||||||||||
10 | 2.4 | Cement Type (SCM) | Cement (Type IS - High, GGBS Mix - low) | 50% | 55% | 60% | Assume Type IS substitute low (40% savings) (minus low baseline), GGBS mix for 95% Savings (low) (minus high baseline); | (Cannon et al., 2021), (Lehne & Preston, 2018), (FHA, 2011) | |||||||||||||||||||||||
11 | 3.1 | Asphalt (Typical) | 100% | 100% | 100% | Assume typical carbon factors hold true. | |||||||||||||||||||||||||
12 | 3.2 | Asphalt (Sasobit Additive) | 91% | 94% | 97% | (Hamzah et al., 2010), (Gui et al., 2022), (Almeida & Sergio, 2019), (Gao et al., 2018), | |||||||||||||||||||||||||
13 | 3.3 | Asphalt (Recycled Rubber Blend) | 64% | 73% | 82% | High carbon, low% blend (15%), low, high % blend (22%). (Note best for warm climates) | (Wang et al., 2020), (FHWA, 2014) | ||||||||||||||||||||||||
14 | 3.4 | Asphalt (Recycled Rubber Blend+Sasobit) | 53% | 66% | 79% | Combined above references - research indicates sasobit can extend range of GTR (ground tire rubber) asphalt into cooler climates but no FHWA references to indicate that. | |||||||||||||||||||||||||
15 | 4.1 | Plastic (Typical) | Baseline: 0% Recycled | 100% | 100% | 100% | Assume typical carbon factors hold true. | ||||||||||||||||||||||||
16 | 4.2 | Recycled Plastic | 70% Recycled | 53% | 53% | 53% | (Tinz et al., 2022)(EPA, 2023) | ||||||||||||||||||||||||
17 | 4.3 | Recycled Plastic | 100% Recycled | 33% | 33% | 33% | (Tinz et al., 2022)(EPA, 2023) | ||||||||||||||||||||||||
18 | 5.1 | Aluminum (Typical) | Baseline: 0% Recycled | 100% | 100% | 100% | Assume typical carbon factors hold true. | ||||||||||||||||||||||||
19 | 5.2 | Recycled Aluminum | 70% Recycled | 34% | 35% | 36% | (GLE, 2018), (Stanford University, 2023),(EPA, 2023) | ||||||||||||||||||||||||
20 | 5.3 | Recycled Aluminum | 100% Recycled | 5% | 7% | 8% | (GLE, 2018), (Stanford University, 2023),(EPA, 2023) | ||||||||||||||||||||||||
21 | 6.1 | Steel (Typical) | Baseline: 0% Recycled | 100% | 100% | 100% | Assume typical carbon factors hold true. | ||||||||||||||||||||||||
22 | 6.2 | Recycled Steel | 70% Recycled | 51% | 56% | 61% | (Sizirici et al., 2021), (GLE, 2018), (Stephen, 2020), (EPA, 2023),(Shash et al., 2014) | ||||||||||||||||||||||||
23 | 6.3 | Recycled Steel | 100% Recycled | 30% | 37% | 44% | (Sizirici et al., 2021), (GLE, 2018), (Stephen, 2020), (EPA, 2023),(Shash et al., 2014) | ||||||||||||||||||||||||
24 | 7.1 | Copper/Bronze/Brass (Typical) | Baseline: 0% Recycled | 100% | 100% | 100% | Assume typical carbon factors hold true. | ||||||||||||||||||||||||
25 | 7.2 | Recycled Copper/Bronze/Brass | 70% Recycled | 37% | 37% | 37% | (EPA, 2023), (Antti, 2013),(Mohan, 2016) | ||||||||||||||||||||||||
26 | 7.3 | Recycled Copper/Bronze/Brass | 100% Recycled | 10% | 10% | 10% | (EPA, 2023), (Antti, 2013),(Mohan, 2016) | ||||||||||||||||||||||||
27 | |||||||||||||||||||||||||||||||
28 | Table 1b: Transportation Assumptions | ||||||||||||||||||||||||||||||
29 | Modifier # | Transportation Assumptions | CO2 kg/ ton-mile | CH4 kg/ ton-mile | N2O kg/ ton-mile | CO2e kg/ ton-mile | CO2e kg/(kg/km) | Assumptions / Notes | Citations | ||||||||||||||||||||||
30 | T.1 | Raw Factors | Truck | 0.21100 | 0.00200 | 0.00490 | 1.72120 | 0.00107 | EPA values from 2020, assume non-renewable energy sources. (Update CH4 added as factor of 25, and N20 added as factor 298, to CO2E for transportation factors). | (EPA, 2022) | |||||||||||||||||||||
31 | T.2 | Raw Factors | Rail | 0.02200 | 0.00170 | 0.00060 | 0.24330 | 0.00015 | EPA values from 2020, assume non-renewable energy sources. (Update CH4 added as factor of 25, and N20 added as factor 298, to CO2E for transportation factors). | (EPA, 2022) | |||||||||||||||||||||
32 | T.3 | Raw Factors | Ship | 0.04100 | 0.01830 | 0.00080 | 0.73690 | 0.00046 | EPA values from 2020, assume non-renewable energy sources. (Update CH4 added as factor of 25, and N20 added as factor 298, to CO2E for transportation factors). | (EPA, 2022) | |||||||||||||||||||||
33 | T.4 | Raw Factors | Plane | 1.16500 | 0.00000 | 0.03590 | 11.86320 | 0.00737 | EPA values from 2020, assume non-renewable energy sources. (Update CH4 added as factor of 25, and N20 added as factor 298, to CO2E for transportation factors). | (EPA, 2022) | |||||||||||||||||||||
34 | T10.1 | Transportation Options | Assume 100% Truck (Typical) | 0.00107 | From raw factors | ||||||||||||||||||||||||||
35 | T10.2 | Transportation Options | Assume 90% Rail, 10% Truck | 0.00024 | From raw factors | ||||||||||||||||||||||||||
36 | T10.3 | Transportation Options | Assume 90% Shipping, 10% Truck | 0.00052 | From raw factors | ||||||||||||||||||||||||||
37 | T10.4 | Transportation Options | Assume 95% Air, 5% Truck | 0.00706 | From raw factors | ||||||||||||||||||||||||||
38 | T10.5 | Transportation Options | Assume entirely bicycle or renewable energy for transit | 0.00000 | From raw factors | ||||||||||||||||||||||||||
39 | T20.1 | Distance Options | On-site | 1 | Assume movement around site | ||||||||||||||||||||||||||
40 | T20.2 | Distance Options | Hyper-Local | 16 | 10 mi source radius | ||||||||||||||||||||||||||
41 | T20.3 | Distance Options | Local | 160 | 100 mi source radius | ||||||||||||||||||||||||||
42 | T20.4 | Distance Options | Regional | 800 | 500 mi source radius | ||||||||||||||||||||||||||
43 | T20.5 | Distance Options | Long Distance | 4800 | 3000 mi source radius | ||||||||||||||||||||||||||
44 | |||||||||||||||||||||||||||||||
45 | Table 1c: Landscape Materials Carbon Data | ||||||||||||||||||||||||||||||
46 | Material # | Category | Materials Unique Name | Low Carbon Factor (LCf) | Median Carbon Factor (MCf) | High Carbon Factor (HCf) | Units | Density (kg/M^3) | Carbon Stored (kgCO2e)/M^3 | Replacement Cycles (x times in 60 years) (1 means no replacement after initial installation) | Notes General Note: All carbon factors converted to kgCO2e/Kg material for comparison sake; when >5 North American EPDs available on EC3, or >10 other sources, box plots used for low and high), note, while data is pulled from around the world, when using CLF or EC3 data box plots (low=Q1, high Q3) north american data is prioritized when available. In general, north american data has higher carbon factors than UK, EU, Australia, and China, and is thus considered more conservative. When North American EPDs where not readily located, international EPDs meeting ISO standards, or academic LCAs supplemented. Note, EPDs vary in reference between A1-A3 and A1-A5, but usually 90%+ emissions or more in A1-A3, and A4 and A5 are covered by transport and fabrication factors elsewhere. Note, Carbon stored is calculated by 50% dry biomass (% Carbon), and multiplied by CO2e factor (3.66). | Citations | |||||||||||||||||||
47 | 1.01 | Clay Brick | Clay Brick (Air/Sun Dried) | 0.010 | 0.035 | 0.060 | kgC02e/kg | 2,094.900 | 1 | Not available on EC3. Median simple average (low,high) | 0.06 (Hammond & Jones, 2008), 0.01 (Dabaieh et al., 2020) | ||||||||||||||||||||
48 | 1.02 | Clay Brick | Clay Brick (Baked) (Typical) | 0.230 | 0.390 | 0.550 | kgC02e/kg | 2,094.900 | 1 | Not available on EC3. Median simple average (low,high) | 0.53 to 0.55 (Mohan, 2016), 0.236 (NSF, 2020), 0.32 (Crawford et al., 2019), | ||||||||||||||||||||
49 | 2.01 | Stone | Stone (Quarried and unfinished) | 0.010 | 0.020 | 0.030 | kgC02e/kg | 2,673.840 | 1 | Not available on EC3. Assumptions - Granite for density. Median simple average (low,high) | .01 to .03 Raw (Kittipongvises et al., 2016) 0.01 (Hammond & Jones, 2008), | ||||||||||||||||||||
50 | 2.02 | Stone | Stone (Quarried and Dressed) (Typical) | 0.073 | 0.076 | 0.079 | kgC02e/kg | 2,673.840 | 1 | Not available on EC3. Assumptions - Granite- range scale of blocks - large monolithic is more efficient to cut and finish than finer pieces. Median simple average (low,high) | .073 to .079 (dressed) (Mohan, 2016), | ||||||||||||||||||||
51 | 2.03 | Stone | Stone (Quarried, Complex cutting (CNC) and Dressed) | 0.113 | 0.182 | 0.250 | kgC02e/kg | 2,673.840 | 1 | Limited on EC3. Low end assumptions - Granite, milled through 15000 Kw hours per CM block (low - 8 hours continuous CNC machine time), High end, use architectural cladding EPD. Median simple average (low,high) | .073 to .079 (dressed) (Mohan, 2016), + CNC time (Li et al., 2015); Using EC3 Architectural stone cladding .25, but note only one reference (Building Transparency.org, 2023) | ||||||||||||||||||||
52 | 3.01 | Cement | Cement (Type 1 or 2) (Typical) | 0.600 | 0.775 | 0.950 | kgC02e/kg | 1,450.320 | 2 | Assume cement for 3000-4000 psi (20.7-27.6 MPa) concrete. Median simple average (low,high) Mean simple average . | 0.6-0.95 kgCO2e/kg (Building Transparency.org, 2023), 0.745 (Antti, 2013), 0.841 (Mukherjee et al., 2011), 0.73-0.74 (Mohan, 2016), .24-.28 , higher end more common in range of Athena (Athena Institute, 2005) | ||||||||||||||||||||
53 | 3.02 | Cement | Cement (Type IP) | 0.450 | 0.620 | 0.808 | kgC02e/kg | 1,450.320 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate Median simple average (low,high) | |||||||||||||||||||||
54 | 3.03 | Cement | Cement (Type IL) | 0.510 | 0.678 | 0.855 | kgC02e/kg | 1,450.320 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate (note Tyle 1L has crushed limestone as cement reducer, not the same as portland limestone cement) Median simple average (low,high) | |||||||||||||||||||||
55 | 3.04 | Cement | Cement (Type IS - High, GGBS Mix - low) | 0.300 | 0.426 | 0.570 | kgC02e/kg | 1,450.320 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
56 | 4.01 | Mortar | Mortar (Type N low Type S or M high) | 0.152 | 0.204 | 0.256 | kgC02e/kg | 1,659.810 | 2 | 1:3 Ratio of Cement with Sand | |||||||||||||||||||||
57 | 5.01 | Concrete | Concrete (1:2:4, type 1 or 2) (Typical - no SCM) | 0.179 | 0.236 | 0.324 | kgC02e/kg | 2,226.210 | 2 | Assume 3000-4000 psi (20.7-27.6 MPa). Selected CLF data points for basis of table, due to use of a wide range of epds, with low and high values projected by a Q1/Q3 box plot. . Selected CLF data points for basis of table, due to use of a wide range of epds, with low and high values projected by a Q1/Q3 box plot. | L.179,M.236,H.324, (Carlisle et al., 2021), 0.1-0.107 (Mohan, 2016), 0.23-0.48 (Athena Institute, 2005), .03-.057 (Hammond & Jones, 2008), | ||||||||||||||||||||
58 | 5.02 | Concrete | Concrete (1:2:4, type IP) | 0.134 | 0.189 | 0.275 | kgC02e/kg | 2,226.210 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
59 | 5.03 | Concrete | Concrete (1:2:4, type IL) | 0.152 | 0.207 | 0.292 | kgC02e/kg | 2,226.210 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
60 | 5.04 | Concrete | Concrete (1:2:4, type IS) | 0.090 | 0.130 | 0.194 | kgC02e/kg | 2,226.210 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
61 | 6.01 | Precast Concrete | Precast Concrete (Assume only type 1/ 2 cement) (Typical) | 0.220 | 0.280 | 0.400 | kgC02e/kg | 2,449.420 | 2 | Assume 4000-5000 psi (27.6-34.5 MPa). Selected CLF data points for basis of table, due to use of a wide range of epds, with low and high values projected by a Q1/Q3 box plot. Assume higher cement content - more like cast stone products. | L.220,M.228,H.400, (Carlisle et al., 2021), 0.12 (Antti, 2013), 0.059 (Hammond & Jones, 2008) 0.21 (Athena Institute, 2005), .3 (PCI, 2020) | ||||||||||||||||||||
62 | 6.01 | Precast Concrete | Precast Concrete (Assume Type IP) | 0.165 | 0.224 | 0.340 | kgC02e/kg | 2,449.420 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
63 | 6.02 | Precast Concrete | Precast Concrete (Assume Type IL) | 0.187 | 0.245 | 0.360 | kgC02e/kg | 2,449.420 | 2 | Using Cement Type 1 or 2 as base, times SCM Rate | |||||||||||||||||||||
64 | 7.01 | Sand | Sand (Mined, screened) | 0.002 | 0.013 | 0.024 | kgC02e/kg | 1,616.830 | 1 | Just use low and high values found, mean simple average. | .002 -.014 (Antti, 2013), .024 (Crawford et al., 2019), .02 (Kittipongvises et al., 2016), | ||||||||||||||||||||
65 | 8.01 | Soil | Soil (Mined, screened, amended) | 0.004 | 0.026 | 0.048 | kgC02e/kg | 1,616.830 | 1 | Use sand as proxy for soil mining and screening. Assume source of amendment is carbon neutral, and blending process approximately doubles production. | .002 -.014 (Antti, 2013), .024 (Crawford et al., 2019), .02 (Kittipongvises et al., 2016), | ||||||||||||||||||||
66 | 9.01 | Aggregate Base | Aggregate Base (Crushed) (Typical) | 0.008 | 0.014 | 0.038 | kgC02e/kg | 1,530.890 | 1 | Box plot range from lit review. L:Q1, M:Mean, H:Q3 | .03 (Sizirici et al., 2021), .04-.08(Mitchell, 2012), .014-.041(Antti, 2013), .004-.005(Mohan, 2016), .036(Crawford et al., 2019) .009-.01 (Graniterock, 2018) .007 | ||||||||||||||||||||
67 | 9.02 | Aggregate Base | 100% Recycled Aggregate Base | 0.002 | 0.003 | 0.004 | kgC02e/kg | 1,530.890 | 1 | Assume crushed salvage concrete on site - Estimate based on product estimated fuel (diesel) requirement per ton. | .002 -.004 calculated by equipment pages (MCC, 2023) ; .002 (Jiménez et al., 2018) | ||||||||||||||||||||
68 | 10.01 | Gravel/Rip-Rap | Gravel (off-site mined) | 0.002 | 0.003 | 0.004 | kgC02e/kg | 1,530.890 | 1 | Mean simple average. | .004 (Antti, 2013), .002 (Kittipongvises et al., 2016), | ||||||||||||||||||||
69 | 10.02 | Gravel/Rip-Rap | Gravel/Rip-Rap (crushed) (Typical) | 0.009 | 0.025 | 0.041 | kgC02e/kg | 1,530.890 | 1 | Mean simple average. | .041 (Antti, 2013), .009-.01 (Graniterock, 2018) | ||||||||||||||||||||
70 | 10.03 | Gravel/Rip-Rap | 100% Recycled Gravel/Rip-Rap (not crushed) | 0.002 | 0.004 | 0.006 | kgC02e/kg | 1,530.890 | 1 | Assume crushed salvage concrete on site - Estimate based on product estimated fuel (diesel) requirement per ton. | .002 -.004 calculated by equipment pages (MCC, 2023) ; .002 (Jiménez et al., 2018) .006 (Athena Institute, 2020) | ||||||||||||||||||||
71 | 11.01 | Cinder Blocks | Cinder Blocks (Aerated Concrete Block) | 0.136 | 0.203 | 0.260 | kgC02e/kg | 1,735.010 | 2 | Average of all cinder block EPDs registered in EC3. Selected EC3 data points for basis of table, due to use of a wide range of epds, with low and high values projected by a Q1/Q3 box plot. | 0.442 (Antti, 2013), .076 (Hammond & Jones, 2008) 0.176 (Athena Institute, 2020), M..21,H.31 (Carlisle et al., 2021), L:0.136,M:0.203 H:0.260 (from 67 epds) (Building Transparency.org, 2023) | ||||||||||||||||||||
72 | 12.01 | Asphaltic Concrete | Asphaltic Concrete (HMA) | 0.063 | 0.080 | 0.091 | kgC02e/kg | 1,611.460 | 3 | LC3 HMA Average of Global EPDs listed on 4.16.24 - (Sourced from Meg Calkins, 2025) | (Building Transparency.org, 2024) (Calkins, 2025) | ||||||||||||||||||||
73 | 12.02 | Asphaltic Concrete | Asphaltic Concrete (WMA) | 0.074 | 0.074 | 0.084 | kgC02e/kg | 1,611.460 | 3 | LC3 WMA Average of Global EPDs listed on 4.16.24 - (Sourced from Meg Calkins, 2025) | (Building Transparency.org, 2024) (Calkins, 2025) | ||||||||||||||||||||
74 | 12.03 | Asphaltic Concrete | Asphaltic Concrete (HMA, 40% RAP) | 0.057 | 0.069 | 0.077 | kgC02e/kg | 1,611.460 | 3 | LC3 - average of Global Product EPDs listed on 4.16.24 - (Sourced from Meg Calkins, 2025) | (Building Transparency.org, 2024) (Calkins, 2025) | ||||||||||||||||||||
75 | 12.04 | Asphaltic Concrete | Asphaltic Concrete (WMA, 40% RAP) | 0.048 | 0.052 | 0.055 | kgC02e/kg | 1,611.460 | 3 | LC3 - average of Global Product EPDs listed on 4.16.24 - (Sourced from Meg Calkins, 2025) | |||||||||||||||||||||
76 | 13.01 | Bitumen Tar | Bitumen Tar | 0.410 | 0.450 | 0.490 | kgC02e/kg | 1,551.780 | 3 | Not available on EC3. Median simple average (low,high) | 0.41-0.49(Mohan, 2016), | ||||||||||||||||||||
77 | 14.01 | Polyurethane Resin | Polyurethane Resin | 4.100 | 4.985 | 5.870 | kgC02e/kg | 1,313.040 | 3 | Only one product on EC3. Median simple average (low,high) | 4.23 (Mohan, 2016) 5.87 (Koster, 2014), 4.10 (Building Transparency.org, 2023) | ||||||||||||||||||||
78 | 15.01 | Polyurethane Resin Bonded Aggregate | Polyurethane Resin Bonded Aggregate | 0.207 | 0.252 | 0.297 | kgC02e/kg | 1,650.260 | 3 | Assume 5% Resin, 95% gravel (mined) | |||||||||||||||||||||
79 | 16.01 | Steel | Steel (Primary Steel in BF-BOF (up to 30% recycled)) | 1.864 | 2.330 | 2.796 | kgC02e/kg | 7,850.000 | 2 | Global average; World Steel Association (WSA) 2023, Advised by Meg Calkins, 2025 | Global average; World Steel Association (WSA) 2023 | ||||||||||||||||||||
80 | 16.02 | Steel | Steel (World Average BOH & EAF) | 1.528 | 1.910 | 2.292 | kgC02e/kg | 7,850.000 | 2 | Global average; World Steel Association (WSA) 2023,Advised by Meg Calkins, 2025 | Global average; World Steel Association (WSA) 2023 | ||||||||||||||||||||
81 | 16.03 | Steel | Steel (Primary Steel in EAF (90-95% recycled)) | 0.544 | 0.680 | 0.816 | kgC02e/kg | 7,850.000 | 2 | EC3 Average assement conducted by Meg Calkins based on 2023 data, and production through a basic oxygen furnace (BOF)(Note High and Low factors are a simple 20% range based on high/low range for all steel products in EC3). | Global average; World Steel Association (WSA) 2023 | ||||||||||||||||||||
82 | 17.01 | Galv. Steel | Galv. Steel (New Material) (Typical = 70% Recycled Steel, 30% Recycled Zinc) | 1.808 | 2.260 | 2.712 | kgC02e/kg | 7,850.000 | 2 | EC3 site, AGA EPD - Note high and low simple 20% estimate | 0.763-2.8 (Hammond & Jones, 2008) (Sheet vs. product) 1.71 (AGA, 2022) | ||||||||||||||||||||
83 | 17.02 | No Longer Data Point | No Longer Data Point | ||||||||||||||||||||||||||||
84 | 17.03 | No Longer Data Point | No Longer Data Point | ||||||||||||||||||||||||||||
85 | 18.01 | Stainless Steel | Stainless Steel (30-90% Recycled) (Typical) | 2.668 | 3.770 | 4.850 | kgC02e/kg | 7,850.000 | 1 | EC3 Average of 8 SS product EPDs 4.24.24 - (Sourced from Meg Calkins, 2025) | (Building Transparency.org, 2024) (Calkins, 2025) | ||||||||||||||||||||
86 | 18.02 | No Longer Data Point | No Longer Data Point | ||||||||||||||||||||||||||||
87 | 18.03 | No Longer Data Point | No Longer Data Point | ||||||||||||||||||||||||||||
88 | 19.01 | Bronze | Bronze (New Material) (Typical) | 3.730 | 5.725 | 7.720 | kgC02e/kg | 8,850.000 | 1 | Bronze not broken out as bulk product typically on EC3. Median simple average (low,high); note, academic resource bulk material, EPD includes manufactured product | 3.73-4 (Mohan, 2016), 7.72 (product) (Institut Bauen und Umwelt, 2017) | ||||||||||||||||||||
89 | 19.02 | Bronze | Bronze (70% Recycled) | 1.380 | 2.118 | 2.856 | kgC02e/kg | 8,850.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
90 | 19.03 | Bronze | Bronze (100% Recycled) | 0.373 | 0.573 | 0.772 | kgC02e/kg | 8,850.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
91 | 20.01 | Copper | Copper (New Material) (Typical) | 5.500 | 6.750 | 8.000 | kgC02e/kg | 8,940.000 | 1 | Copper only part of wire and data products on EC3. Ekman paper used as base due to the large amount of aggregated academic LCA data included. Median simple average (low,high) | 9.830 (Antti, 2013), 2.6-2.71(Mohan, 2016), Clarify industry standards, based on ICA, Mohan looks low; likely assuming recycled content (ICA, 2022), 5.5-8 (Ekman Nilsson et al., 2017) | ||||||||||||||||||||
92 | 20.02 | Copper | Copper (70% Recycled) | 2.035 | 2.498 | 2.960 | kgC02e/kg | 8,940.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
93 | 20.03 | Copper | Copper (100% Recycled) | 0.550 | 0.675 | 0.800 | kgC02e/kg | 8,940.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
94 | 21.01 | Brass | Brass (New Material) (Typical) | 1.460 | 2.050 | 2.640 | kgC02e/kg | 8,890.000 | 1 | Brass not broken out as bulk product typically on EC3 (components of doors and hardware only). | 2.46-2.64 (Mohan, 2016), 1.46 (Product) (Institut Bauen und Umwelt, 2017), | ||||||||||||||||||||
95 | 21.02 | Brass | Brass (70% Recycled) | 0.540 | 0.759 | 0.977 | kgC02e/kg | 8,890.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
96 | 21.03 | Brass | Brass (100% Recycled) | 0.146 | 0.205 | 0.264 | kgC02e/kg | 8,890.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
97 | 22.01 | Aluminum | Aluminum (New Material) (Typical) | 8.240 | 12.420 | 16.600 | kgC02e/kg | 2,699.000 | 1 | Given range of EPDs, difficult to back out from recycled content impacts for primary. Using Low end of Carlisle study and high end self reported by International Aluminum Institute for basis of range. Median simple average (low,high) | 7.344-4.436 (only 2 products, both with 30-40% recycled content) 6-14.1 (industry) (Building Transparency.org, 2023), 8.91- 12.4 (Carlisle et al., 2021), Both for extrusions; 2.980 (Antti, 2013), 8.2-9.16(Mohan, 2016), 8.3-8.4 (33% recycled)(Hammond & Jones, 2008), industry publication for primary 16.6 (International Aluminum, 2021) | ||||||||||||||||||||
98 | 22.02 | Aluminum | Aluminum (70% Recycled) | 2.760 | 4.291 | 5.910 | kgC02e/kg | 2,699.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
99 | 22.03 | Aluminum | Aluminum (100% Recycled) | 0.412 | 0.807 | 1.328 | kgC02e/kg | 2,699.000 | 1 | Using typical times recycled content factor. | |||||||||||||||||||||
100 | 23.01 | Timber | Milled softwood (typical) | 0.110 | 0.140 | 0.220 | kgC02e/kg | 450.000 | -823.500 | 2 | Assume a coating is used to prevent excessive replacement costs, density assume spruce. Carlisle data points used based on extensive EPD collection, and correspondence to AWC industry wide EPD for north america. | L:0.11, M:0.14, H0.22 (Carlisle et al., 2021), .14 (AWC, 2020), 0.29 (Crawford et al., 2019), 0.126(Hammond & Jones, 2008), 0.19-0.2 |