| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Computer Science/Programming | |||||||||||||||||||||||||
2 | Stanford introduction to CS | http://see.stanford.edu/see/materials/icspacs106b/assignments.aspx http://web.stanford.edu/class/cs106a/faq.shtml | ||||||||||||||||||||||||
3 | Harvard CS205 foundations for computational science | http://iacs-courses.seas.harvard.edu/courses/cs205/syllabus.html | 38 lectures,5 HW assignments, over 15 weeks | |||||||||||||||||||||||
4 | Learn R in a day | http://www.amazon.co.uk/gp/product/B00GC2LKOK/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=B00GC2LKOK&linkCode=as2&tag=datsciwee-20&linkId=IVRNKKRTXRFRI63V | ||||||||||||||||||||||||
5 | The little schemer (book) | http://www.amazon.co.uk/The-Little-Schemer-Daniel-Friedman/dp/0262560992 | ||||||||||||||||||||||||
6 | The Structure and Implementation of Computer Programmes (Book) | http://www.amazon.co.uk/Structure-Interpretation-Computer-Electrical-Engineering/dp/0262510871/ref=wl_mb_wl_huc_mrai_2_dp | ||||||||||||||||||||||||
7 | Seven languages in seven weeks (Book) | https://geneticmail.com/scott/library/text/seven-languages-in-seven-weeks_p1_0.pdf | ||||||||||||||||||||||||
8 | hackerrank | https://www.hackerrank.com/domains | ||||||||||||||||||||||||
9 | Stanford CS 106 A (Java) | http://web.stanford.edu/class/cs106a/ | ||||||||||||||||||||||||
10 | Problem solving with algorithms and data structures | http://interactivepython.org/runestone/static/pythonds/index.html | ||||||||||||||||||||||||
11 | command line crash course | http://cli.learncodethehardway.org/book/ | ||||||||||||||||||||||||
12 | websites in Jekyll | http://www.smashingmagazine.com/2014/08/01/build-blog-jekyll-github-pages/ ; http://jekyllbootstrap.com/lessons/jekyll-introduction.html ; http://jekyllbootstrap.com/usage/jekyll-quick-start.html; https://www.andrewmunsell.com/tutorials/jekyll-by-example/tutorial ; http://hyde.getpoole.com/ | ||||||||||||||||||||||||
13 | 100 numpy exercises | http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html | ||||||||||||||||||||||||
14 | Scientific python lectures (in iPython NB format) | https://github.com/jrjohansson/scientific-python-lectures | ||||||||||||||||||||||||
15 | R programming free e-book (to accompany John Hopkins Coursera course) | https://leanpub.com/rprogramming | ||||||||||||||||||||||||
16 | Plotly intro to numpy | https://plot.ly/numpy/ | ||||||||||||||||||||||||
17 | Pandas cheatsheets (Enthought) | https://www.enthought.com/services/training/pandas-mastery-workshop/#pandas-cheat-sheet-download | ||||||||||||||||||||||||
18 | nand2tetris (build a computer) | http://www.nand2tetris.org/ | ||||||||||||||||||||||||
19 | Understanding computation: From simple machines to impossible programs (ruby) | http://computationbook.com/ | ||||||||||||||||||||||||
20 | ||||||||||||||||||||||||||
21 | Visualisation | |||||||||||||||||||||||||
22 | Harvard CS 171 | http://www.cs171.org/2015/index.html | ||||||||||||||||||||||||
23 | ||||||||||||||||||||||||||
24 | Math/Stats | |||||||||||||||||||||||||
25 | Why learn linear algebra? | http://machinelearningmastery.com/linear-algebra-machine-learning/ | ||||||||||||||||||||||||
26 | Udacity introduction to stats | https://www.udacity.com/course/viewer#!/c-st095 | 1 month (6hrs/day) | Calculus | ||||||||||||||||||||||
27 | Harvard 110: Introduction to probability | http://isites.harvard.edu/icb/icb.do?keyword=k104821&pageid=icb.page676263 | Graph theory | |||||||||||||||||||||||
28 | MIT: Probabilistic Systems Analysis and Applied Probability | http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/ | 12h/week/16 weeks | |||||||||||||||||||||||
29 | as above | https://www.edx.org/course/introduction-probability-science-mitx-6-041x-0#.VSAlA_nF_SE | ||||||||||||||||||||||||
30 | MIT: Multivariable calculus | http://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/ | 35 lectures | |||||||||||||||||||||||
31 | Khan academy: Linear algebra | https://www.khanacademy.org/math/linear-algebra | ||||||||||||||||||||||||
32 | MIT open courseware: statistical thinking and data analysis | http://ocw.mit.edu/courses/sloan-school-of-management/15-075j-statistical-thinking-and-data-analysis-fall-2011/index.htm | ||||||||||||||||||||||||
33 | sliderule | |||||||||||||||||||||||||
34 | Bayesian inference for hackers | http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Prologue/Prologue.ipynb | ||||||||||||||||||||||||
35 | Think stats oreilly [Python heavy] | http://www.greenteapress.com/thinkstats/ | ||||||||||||||||||||||||
36 | Think bayes oreilly | http://www.greenteapress.com/thinkbayes/ | ||||||||||||||||||||||||
37 | Simple stats with Scipy | https://oneau.wordpress.com/2011/02/28/simple-statistics-with-scipy/ | ||||||||||||||||||||||||
38 | All of statistics | http://www.amazon.com/All-Statistics-Statistical-Inference-Springer/dp/0387402721 | ||||||||||||||||||||||||
39 | ipython notebooks for linear regression, logistic regression, random forests, k means | http://nborwankar.github.io/LearnDataScience/ | ||||||||||||||||||||||||
40 | linear regression in Python | http://www.dataschool.io/linear-regression-in-python/ | ||||||||||||||||||||||||
41 | statstics in a nutshell | http://www.amazon.co.uk/Statistics-Nutshell-Desktop-Reference-OReilly/dp/0596510497 | ||||||||||||||||||||||||
42 | probability cheat sheet | https://github.com/wzchen/probability_cheatsheet | ||||||||||||||||||||||||
43 | Linear algebra (MIT open courseware, Gilbert Strang) | http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ | ||||||||||||||||||||||||
44 | Penn State Intro to Probability (good intro notes) | https://onlinecourses.science.psu.edu/stat414/node/287 | ||||||||||||||||||||||||
45 | Implementing a neural network from scratch | http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ | ||||||||||||||||||||||||
46 | Nice conceptual tutorials for glm and glme in R | http://www.bodowinter.com/tutorials.html | ||||||||||||||||||||||||
47 | the elements of statistical learning (free PDF) | http://statweb.stanford.edu/~tibs/ElemStatLearn/ | * | |||||||||||||||||||||||
48 | Visual information theory blog post | http://colah.github.io/posts/2015-09-Visual-Information/ | ||||||||||||||||||||||||
49 | A tutorial on PCA | https://arxiv.org/abs/1404.1100 | ||||||||||||||||||||||||
50 | Data visualisations in d3 explaining basic stats concepts | http://students.brown.edu/seeing-theory/ | ||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||
52 | ||||||||||||||||||||||||||
53 | Data science | |||||||||||||||||||||||||
54 | CS109 Harvard Data science | http://cs109.github.io/2014/pages/syllabus.html | 22 lectures, 5 HW over 12 weeks | |||||||||||||||||||||||
55 | as above | http://www.quora.com/What-is-it-like-to-take-CS-109-Statistics-121-Data-Science-at-Harvard | ||||||||||||||||||||||||
56 | Introduction to Big Data | https://www.edx.org/course/v2/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x | ||||||||||||||||||||||||
57 | Udacity Intro to Data Science | https://www.udacity.com/course/ud359 | ||||||||||||||||||||||||
58 | The Open Source Data Science Masters | http://datasciencemasters.org/ | ||||||||||||||||||||||||
59 | Metacedemy | https://www.metacademy.org/ | ||||||||||||||||||||||||
60 | Data science from scratch | http://shop.oreilly.com/product/0636920033400.do | ||||||||||||||||||||||||
61 | ||||||||||||||||||||||||||
62 | General advice | |||||||||||||||||||||||||
63 | How to land your first job | https://www.linkedin.com/pulse/landing-your-first-real-data-benjamin-taylor | ||||||||||||||||||||||||
64 | Open Source DS Masters couple | https://datascientistjourney.wordpress.com/about/ | ||||||||||||||||||||||||
65 | 80,000 hours exploratory profile on data science | https://80000hours.org/career-guide/top-careers/profiles/data-science/ | ||||||||||||||||||||||||
66 | Udacity data science skills checklist | http://blog.udacity.com/data-analyst-skills-checklist-eguide | ||||||||||||||||||||||||
67 | Zipfian academy's list of training resources | https://github.com/zipfian/data-science-primer | ||||||||||||||||||||||||
68 | ||||||||||||||||||||||||||
69 | Machine learning | |||||||||||||||||||||||||
70 | Stanford Intro to machine learning (Coursera) | https://www.coursera.org/course/ml | 18 lectures, 7 hours a week = 2.5 weeks of work | |||||||||||||||||||||||
71 | Amazon machine learning | http://docs.aws.amazon.com/machine-learning/latest/mlconcepts/ | ||||||||||||||||||||||||
72 | 15 hours of machine learning videos in R | http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/ | ||||||||||||||||||||||||
73 | Machine learning for hackers | http://shop.oreilly.com/product/0636920018483.do | ||||||||||||||||||||||||
74 | Machine learning: an algorithmic perspective | https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/9781466583283 | ||||||||||||||||||||||||
75 | Easy datasets for ML | https://archive.ics.uci.edu/ml/datasets.html | ||||||||||||||||||||||||
76 | Machine learning cheat sheet | https://github.com/soulmachine/machine-learning-cheat-sheet | ||||||||||||||||||||||||
77 | A few useful things to know about ML (paper) | http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf | ||||||||||||||||||||||||
78 | Applied ML process (PDF, $11) | https://machinelearningmastery.com/applied-machine-learning-process/ | ||||||||||||||||||||||||
79 | Best ML resources for getting started | http://machinelearningmastery.com/best-machine-learning-resources-for-getting-started/ | ||||||||||||||||||||||||
80 | Intro to deep learning with tensorflow | https://www.udacity.com/course/deep-learning--ud730 | ||||||||||||||||||||||||
81 | Openai requests for research | https://openai.com/requests-for-research/ | ||||||||||||||||||||||||
82 | Stanform Neural networks CS231n (image recognition) | http://cs231n.github.io/ | ||||||||||||||||||||||||
83 | RNNs in TensorFlow | https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html | ||||||||||||||||||||||||
84 | Blogpost explaining LSTM | https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html | ||||||||||||||||||||||||
85 | Data viz for developing intuition about Neural Networks | http://colah.github.io/posts/2014-10-Visualizing-MNIST/ | ||||||||||||||||||||||||
86 | Michael Nielson's introduction to Neural Networks and deep learning (free online book) | http://neuralnetworksanddeeplearning.com/ | ||||||||||||||||||||||||
87 | Practical machine learning for coders | https://course18.fast.ai/ml?fbclid=IwAR0DoMMjH9Wv2rfqDrKyRFKV2evTmF7OE7I_hcimYDr2C6ftb1FeSG0ohTY | ||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | Misc | |||||||||||||||||||||||||
90 | A gallery of interesting ipython notebooks | https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#natural-language-processing | ||||||||||||||||||||||||
91 | Zipfian academy | https://docs.google.com/document/d/1GI3oVas8yswhqPk_8-VIANHR1uJ6R19HNhl7GiH9vq4/pub | ||||||||||||||||||||||||
92 | Insight recommendations | http://insightdatascience.com/blog/preparing_for_insight.html | ||||||||||||||||||||||||
93 | software carpentry | http://software-carpentry.org/lessons.html | ||||||||||||||||||||||||
94 | 100 interesting data sets for statistics | http://rs.io/100-interesting-data-sets-for-statistics/ | ||||||||||||||||||||||||
95 | Interview questions | http://www.datasciencequestions.com/ | ||||||||||||||||||||||||
96 | A cool blog by an aspiring data scientist | https://proquestionasker.github.io/ | ||||||||||||||||||||||||
97 | Lots and lots of free ML and stats books | https://towardsdatascience.com/springer-has-released-65-machine-learning-and-data-books-for-free-961f8181f189?fbclid=IwAR1PkC-LmzedZbr_HNX_FOlc5FTlgW6N0nJ18TEdgoKL_AY9yddw0Uj5Bbg&gi=cef7377cacde | ||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | Databases | |||||||||||||||||||||||||
100 | SQL tutorial | http://sqlzoo.net/w/index.php?title=SQL_Tutorial&redirect=no |