ABCDEFGHIJKLMNOPQRSTUVWXY
1
WeekIDNameDateReadingTopicNotesLinks
2
10Mon. Lec.1/22/2018Negnevitsky 1 (All of it)
Russel and Norvig 1.2-1.3
Role call for instructor initiated drop policy, syllabus, introduction,
rationality, conciousness
First day of classes
3
1-Tues. Lab1/23/2018
No lab, watch Star Trek TNG 2x9 The Measure of a Man on your own time
4
11Wed. Lec.1/24/2018Negnevitsky Chapter 1.1, emphasis on
Turing test
Russel and Norvig 1.1-1.1.4
Computing Machinery and Intelligence [1]
Jigsaw on Computing Machinery and IntelligenceKahoot!: Computing Machinery and Intelligence
5
22Mon. Lec.1/29/2018Negnevitsky 2.1-2.5
Russel and Norvig 8.1-8.4
Review FOL logic from Discrete
Structures
Intelligent agents and first-order (predicate) logicKahoot!: Intelligent agents
6
2-Tues. Lab1/30/2018Negnevitsky 2.1-2.2
Russel and Norvig 2.1-2.4
Lab 0: A simple reflex agent and performance metrics
https://github.com/DrAlbertCruz/CMPS-356-Lab-0
7
23Wed. Lec.1/31/2018Negnevitsky 2.2First order logic, relationship to expert systems
8
34Mon. Lec.2/5/2018Star Trek 2x24, The Ultimate Computer [2]Watch Star TrekHW set 1 due
9
3-Tues. Lab2/6/2018Negnevitsky 2.6.1Lab 1: Backward chaining and tracing in Prologhttps://github.com/DrAlbertCruz/CMPS-356-Lab-1
10
35Wed. Lec.2/7/2018Negnevitsky 2.6
Russel and Norvig 3.4-3.4.3, 9.3
Backward chaining and forward chainingKahoot!: Expert systems
11
46Mon. Lec.2/12/2018Negnevitsky 3-3.1Review of probability, probability as a logic, Bayes ruleHW set 2 due, Kahoot!: Inference with FOL
12
4-Tues. Lab2/13/2018Negnevitsky example on MEDIA AdvisorLab 2: MEDIA Advisor in Prologhttps://github.com/DrAlbertCruz/CMPS-356-Lab-2
13
47Wed. Lec.2/14/2018Russel and Norvig 13-13.2Examples of Bayes rule, Bayes biasKahoot!: Probability quiz
14
58Mon. Lec.2/19/2018Negnevitsky 3.5
Russel and Norvig 14.7
Likelihood of sufficiency and liklihood of necessityHW set 3 due, Kahoot!: 3 Var. Joint Probabilities
15
5-Tues. Lab2/20/2018No new readingLab 3: Uncertainty factors in prologNo git, lab manual only
16
59Wed. Lec.2/21/2018No new readingMidterm I review
http://cs.csubak.edu/~acruz/CMPS3560/cmps_3560_midterm_review_2018.pdf
17
6-Mon. Lec.2/26/2018Nevnevitsky 3.6Examples of LS/LN, Measures of belief and disbeliefHW set 4 due, Kahoot!: 3 Var. Bayes http://cs.csubak.edu/~acruz/CMPS3560/cmps_3560_LSLN_examples_cf.pdf
18
6-Tues. Lab2/27/2018No new readingMidterm I during lab period1 page cheat sheet front and back
19
6-Wed. Lec.2/28/2018No new readingMidterm I debriefExam solutions not given out, please come to class
20
710Mon. Lec.3/5/2018Negnevitsky 4.1, 4.3
Russel and Norvig 8.1.2, 14.7.3
Introduction to fuzzy logic, linguistic variables and hedgesKahoot!: CMPS 3560: LS and LN
21
7-Tues. Lab3/6/2018Negnevitsky 4.3Lab 4: Fuzzy expert systems in PrologNo git, lab manual only
22
711Wed. Lec.3/7/2018Negnevitsky 4.2, 4.4-4.5Fuzzy sets, operations on fuzzy sets, monotonic inferenceKahoot!: Logical paradoxes
http://cs.csubak.edu/~acruz/CMPS3560/cmps_3560_Fuzzy_ops_Monotonic_Selection.pdf
23
812Mon. Lec.3/12/2018Negnevitsky 4.6.1Mamdani inference with examplesHW set 5 due, Kahoot!: CMPS 3560: Monotonic
inference
http://cs.csubak.edu/~acruz/CMPS3560/cmps_3560_fuzzy_mamdani.pdf
24
8-Tues. Lab3/13/2018No new readingLab 5: Fuzzy toolbox in MATLABNo git, lab manual only
25
813Wed. Lec.3/14/2018Negnevitsky 4.6.2Sugeno inference with examplesKahoot!: CMPS 3560: Monotonic inference
26
914Mon. Lec.3/19/2018Negnevtistky 6.1-6.2
Russel and Norvig 18-18.2
Introduction to the brain, neurons, perceptronHW set 6 due, Kahoot!: CMPS 3560: Perceptron
27
9-Tues. Lab3/20/2018Negnevitsky 6.3
Russel and Norvig 18.7-18.7.2
Lab 6: Perceptron learning algorithmFork your lab 0
28
915Wed. Lec.3/21/2018No new readingLinear separability, bias terms, feature scaling
29
10-Mon. Lec.3/26/2018SPRING BREAK - NO CLASS
30
10-Tues. Lab3/27/2018SPRING BREAK - NO CLASS
31
10-Wed. Lec.3/28/2018SPRING BREAK - NO CLASS
32
11-Mon. Lec.4/2/2018No new readingMidterm II review
33
11-Tues. Lab4/3/2018No new readingMidterm II during lab periodHW set 7 due
34
11-Wed. Lec.4/4/2018Revisit Negnevitsky 6.3Introduction to backpropagationKahoot!: CMPS 3620: Perceptron full dataset
35
1216Mon. Lec.4/9/2018No new readingIntroduction to backpropagation (Cont.)Kahoot!: CMPS 3560: ANN Feedforward
36
12-Tues. Lab4/10/2018Russel and Norvig 18.7.4Lab 7: Multilayer perceptron and backpropagationKahoot!: CMPS 3560: ANN Backpropagation
37
1217Wed. Lec.4/11/2018Revisit Russel and Norvig 18.7.4Midterm II debriefExam solutions not given out, please come to class
38
1318Mon. Lec.4/16/2018Negnevitsky 6.4Examples of backpropagation in classHW set 8 due
39
13-Tues. Lab4/17/2018No new readingLab 7 continued
40
1319Wed. Lec.4/18/2018Negnevitsky 6.5Accellerating backpropagationKahoot!: CMPS 3560: Vanishing gradient
41
1420Mon. Lec.4/23/2018Negnevitsky 7.1-7.3Introduction to evolutionary computationHW set 9 due, CMPS 3560: Gradient descent and
backpropagation
42
14-Tues. Lab4/24/2018Negnevitsky 7.4-7.5Lab 8: Genetic algorithms and the max ones problem
43
1421Wed. Lec.4/25/2018No new readingMutation, crossover, selection, elistism
44
1522Mon. Lec.4/30/2018Negnevitsky 7.6Introduction to evolutionary strategiesHW set 10 due, Kahoot!: CMPS 3560: Genetic
algorithms and max ones
45
15-Tues. Lab5/1/2018No new readingLab 9: (1+1) Evolutionary strategies and trend line fitting
46
1523Wed. Lec.5/2/2018Negnevitsky 7.7Introduction to genetic programming
47
1624Mon. Lec.5/7/2018No new readingFinal review
48
16-Tues. Lab5/8/2018No new readingFinal exam in lab session
49
1625Wed. Lec.5/9/2018No new readingNo classHW set 11 due
50
Final Exam-Final Exam
Held during lab in week 16 because I have to leave country for a conference
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100