
Description
Properties
MNEMONIC: Definition Notes tmux neovim emacs irssi weechat fish @textshell's suggestions It just seems important

0

Color capabilities

24BIT_COMPAT: Boolean
CSI 38;2;[red];[green];[blue] m
CSI 48;2;[red];[green];[blue] m

24BIT_FULL: Boolean
CSI 38:2:[colorspace]:[red]:[green]:[blue]<:more params> m
CSI 48:2:[colorspace]:[red]:[green]:[blue]<:more params> m
The <more params>, if present, should be ignored or
implemented according to ITU T.416-199303.

 256 colors is assumed if you support feature reporting at all. In
256 color mode, colors may be immutable. Prefer 24 bit color
instead of changing the palette.

256 colors
High pri if not ubiquitous, but I think it's ubiquitous these days. CSI 38/48;5;N m where N is 0-255. fish says they would
use it, though. Terminals without 256 color support per https://fedoraproject.org/wiki/Features/256_Color_Terminals:
linux virtual console (*neovim's tui.c says this was fixed in Linux 4.8)
tn5250
x3270
rxvt (8)
urxvt (88)
aterm

24 bit color
Spec says:
CSI 38:2:[color space]:[red]:[green]:[blue]:[unused]:[tolerance]:[tolerance colorspace] m

These forms may be found in the wild:
CSI 38/48:2:[red]:[green]:[blue]:[unused]:[tolerance]:[tolerance colorspace] m
CSI 38/48;2;[red];[green];[blue] m
CSI 38/48:2:[red]:[green]:[blue] m
CSI 38/48:2:[colorspace]:[red]:[green]:[blue] m
CSI 38/48:2:[colorspace]:[red]:[green]:[blue]:<extra ignored args> m

Some terminals still do not support :. Let's go with semicolons in the short form for them, and colons for the long form.
TODO: Investigate if this will actually work.
See https://bugzilla.gnome.org/show_bug.cgi?id=791456
See also https://gist.github.com/textshell/93ae4cbf4d8f93e26bdd1affda90318f

https://github.com/neovim/neovim/issues/7490 ✔ ✔ ✔ ✔

OSC 52 (clipboard access)

CLIPBOARD_WRITABLE: Boolean
OSC 52;[s0];<base64-data> places decoded <base64-data> on
primary clipboard. If base64-data is empty or invalid base-64
bytes, the clipboard is cleared.

Should we have a separate flag for read vs write? Any security implications to advertising clipboard reading? Consider
high pri because it's expensive when sending a lot of data to clipboard

✔ ✔
DECSLRM (set left right margins) &
DECLRMM (enable left-right margins)

DECSLRM: Boolean
Exact specs TBD based on esctest. There are a lot of them. ✔ ✔ ✔

SGR mouse and the other mouse options

Proposal:
MOUSE_BASIC: Boolean
DECSET 1000, 1002, 1003, 1006 supported. TODO: Define this
more precisely.

MOUSE_SCROLL: Boolean
DECSET 1007 supported. TODO: Define this more precisely

Terminals implement any combination of these:

DECSET 9 — X10_MOUSE
DECSET 1000 — VT200_MOUSE
DECSET 1001 — VT200_HIGHLIGHT_MOUSE
DECSET 1002 — BTN_EVENT_MOUSE
DECSET 1003 — ANY_EVENT_MOUSE
// DECSET 1004 not included here; see focus reporting elsewhere
DECSET 1005 — EXT_MODE_MOUSE
DECSET 1006 — SGR_EXT_MODE_MOUSE
DECSET 1015 — URXVT_EXT_MODE_MOUSE
DECSET 1007 — ALTERNATE_SCROLL

Rationale:
Modes 9, 1005, and 1015 are all strictly inferior to other modes. We should push people away from these standards.
TODO: Does 1001 have any use? It seems like a prima facie bad idea, but maybe there's a use case I'm unaware of.
1007 is useful, but it's quite different from 1000-6. ✔ ✔ ✔ ✔

UTF-8 support is "good"

UNICODE_BASIC: Boolean
False: No guarantees. Maybe no Unicode support at all, maybe
just ASCII.
True: Accepts UTF-8. Renders https://pastebin.
com/raw/6XHCa5nZ like https://i.imgur.com/FeMYmJJ.png with
respect to the number of extended grapheme clusters and their
widths. The exact glyphs that are drawn are not important, and
can be replaced with combining marks if the font does not have
them.

Lots of old & busted terminals fail to have UTF-8 support but might claim it in LANG. Per nicm: linux*, vt100 and the
other vt*, ansi, pccon*, sun, color_xterm and its many friends, wsvt*, pcvt*, cons*
One or two of these have a tiny chance of adopting this spec (modern *nix consoles)

✔ ✔

DECSCUSR (cursor shape) — CSI p SP q

DECSCUSR: Boolean
Is DECSCUSR supported for block and underline cursor?
Blinking variants are not required to actually blink.

DECSCUSR_BAR: Boolean
Will DECSCUSR 5&6 set the cursor to a bar&blinking bar?

This is frequently requested (per nicm and textshell); mostly apps want to know which options they have available for
UX purposes. Per the nosh guide some terminals decode it incorrectly, printing part of the control sequence.
Report if you support block, underline, bar. I don't think we need to worry about blinking? TODO: Are there further
extensions to consider?

TODO: GNU screen seems to do something funny here. See neovim's tui.c comment about Ss/Se using DCS.
TODO: A comment in tui.c suggests tmux and screen do this differently.

✔ ✔

Ambiguous is fullwidth

AMBIGUOUS_FULLWIDTH: Boolean
Will ambiguous width characters per east asian widths be
fullwidth? Depends on the reported unicode version.

@nicm considers this high pri. I think it's pretty straightforward: how many cells does the cursor advance when a
character in east asian widths marked as ambiguous is printed?

✔

Unicode version

UNICODE_VERSION: uint_4
A 4-bit unsigned integer. If 0, no or unspecified unicode support.
If 1, unicode version is 8 or less. If 2 or greater, add 7 to get the
unicode version supported. If equal to 15, then unicode version is
more than or equal to 22.

This tells you which emoji are safe to use. It's not a complete answer to wcwidth problems, but it will solve a number of
problems. I'm making this high priority because "ambiguous is fullwidth" can't be defined without it.

✔

RTL/BiDi

Egmont should chime in on how to best expose this, as there are multiple levels of support in his spec. The spec says:

 For terminfo and querying features, I think we should be able to report optional sub-features, conformance level, and
have versioning (to report which version of this spec is supported). Either as parameters somehow, or each as a new
feature.

https://terminal-wg.pages.freedesktop.org/bidi/future-improvement-ideas/feature-reporting.html ✔

Title setting & stack

TITLE_SETTING: Boolean
Conforms to xterm's definition of:
CSI 22 t — save title on stack
CSI 23 t — restore title from stack
OSC 0 — set window & icon title
OSC 1 — set icon label
OSC 2 — set window title

TODO: Find esctests for these.

A conforming implementation would support:
CSI 22 t — save title on stack
CSI 23 t — restore title from stack
OSC 0 — set window & icon title
OSC 1 — set icon label
OSC 2 — set window title

We could specify a set of esctest tests to pass, but terminals should have freedom to define "icon title" in some
reasonable way.

Tmux's ESC k sequence is not included (this sets the window’s name, not the title) ✔ ✔ ✔

bracketed paste (DECSET 2004)

BRACKETED_PASTE: Boolean
DECSET 2004 controls whether pastes are prefixed with `ESC [2
0 0 ~` and suffixed with `ESC [2 0 1 ~` ✔ ✔ ✔ ✔

focus reporting (DECSET 1004)

FOCUS_REPORTING: Boolean
Decset 1004 controls whether keyboard focus gained causes the
terminal to report CSI I and focus lost reports CSI O ✔ ✔ ✔ ✔

OSC 7 (cwd)

CWD: Boolean
OSC 7; file:///xxx indicates the current directory. The terminal
uses this in an implementation-defined way to assist the user. ✔ ✔

underline styles and colours (SGR 4 and 58)

UNDERLINE_STYLE: Boolean
SGR 4:3 turns on underlining and sets underline style to "curly".
SGR 4:1 turns on underlining and sets underline style to
"straight".
SGR 4 is a synonym for SGR 4:1

NOTE: nicm suggests making this "sgr 4 has subparams" rather
than "sgr 4:3 is supported". Waiting for more input before
committing.

Some terminals accept a subparameter for underline style, like SGR 4:1. Kitty has a bunch here: https://sw.kovidgoyal.
net/kitty/protocol-extensions.html
To set underline style, SGR 58:2:r:g:b, but I'm not aware of any terminals that implement it. SGR 59 resets the
underline color. Dotted and dashed support shouldn't be added until two terminals implement it. There's already SGR
21 for double underline. More context here: https://gitlab.com/gnachman/iterm2/-/issues/6382

✔ ✔

strikethrough (SGR 9)

STRIKETHROUGH: Boolean
SGR 9 enables strikethrough text style
Note: strikethrough can coexist with underline. ✔ ✔

overline (SGR 53) OVERLINE: Boolean
SGR 53 enables overline text style

✔

synchronized updates (DCS =1 and =2)

SYNC: Boolean
Conforms to https://gitlab.freedesktop.org/terminal-
wg/specifications/-/merge_requests/2

✔

OSC 8 (hyperlinks)

HYPERLINKS: Boolean
Conforms to https://gist.github.
com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda

https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda
Do we need to indicate whether hover (and therefore id=) is supported? I'm leaning against it.

✔

OSC 9 (notifications)

NOTIFICATIONS: Boolean
OSC 9;message causes `message` to be displayed as a user
notification in a platform-defined way.

In iTerm2, the spec is:
^[]9;Message content goes here^G
Other terminals may have variants? This one is unfortunately impossible to extend.

✔

Sixel

SIXEL: Boolean
Sixel is supported. TODO: We might need to specify some subset
of sixel based on feedback from terminal developers. ✔

Italics

ITALICS: Boolean
SGR 3 enables italic text style

irssi dev reported that his server lacks a tmux terminfo so italics broke. They call this out as an example of a newish
control sequence that still doesn't work right after five years.

✔
Low priority

Can change background color of a subrange of
unset cells

BGE_UNSET_CELLS: Boolean
If true, then this command shows 4 cells with a green
background:
 printf 'abc\033[42m\033[0K\033[44m\033[4C\033[0K\033[0m\n'
should show some green

This seems to be just a Terminal.app bug. Can bump priority if we find another terminal with this problem. ✔ ✔
DECFRA (fill rectangle) Can't change color to default bg color. Consider adding an extension in the future? ✔

Is screen/tmux-like

SGR 3/23 is reverse video instead of 7/27. DECSET 5 unavailable. Control sequences to pass through must be
wrapped with DCS & ESC doubled up. tmux uses DCS tmux; while screen uses just DCS. screen may require
wrapping to change cursor shape, while modern tmux does not. $TERM is not an adequate solution to this problem
because it's often a lie. This should probably be multiple flags, one for each attribute. fish wraps DECSCUSR with DCS
TODO: What does byobu do? ✔

DEC Locator
The nosh guide states that only xterm supports DECELR and DECSLE, and that other terminals handle it incorrectly. Is
there market demand for DEC locator? It looks like it gives pixel accurate mouse reporting. Neat

DECSNLS (CSI * |)
The nosh guide claims that only xterm supports DECSNLS (set number of lines) and that others use DECSLPP (which
has weird behavior for parameters between 0-24)

REP

Ther nosh guide states that only xterm supports REP. This isn't true because newer versions of iTerm2 have it. I bet
there are discrepancies around how terminals deal with multibyte UTF-8 & combining marks and REP. Consider
restricting what this feature flag commits to to only codepoints < 256 and only to the end of the line. Per nicm:
"Everyone who uses TERM=xterm has to have REP now because ncurses started using it. I would say is definitely only
defined with ASCII."

DECSTR
The nosh guide claims that only xterm understands DECSTR. Really?? Moving this to low priority because it's probably
not a good idea to use unless you're `clear`.

DECSCPP Terminal resizing is discouraged, so making this low-priority.

VS16
Variation selector 16 can change the width of a character it combines with. U+2764 U+FE0F is fullwidth, while U+2764
is halfwidth. It's not clear exactly how terminals should deal with this, so it's hard to spec a feature flag for it.

Unprioritized
mintty's alternate escape sequence (SM 7727) https://github.com/mintty/mintty/wiki/Tips ✔
Other inline image sequences (iTerm2, kitty,
Tektronix, ARDS, SUPDUP, RFC 746, REGIS)

Not sure how to do this without priviledging certain terminals. textshell suggests only adding flags for features with at
least 2 terminals supporting it, which makes sense to me. ✔

CSI ? 6 n (DECXCPR — report cursor
position) textshell uses this because CPR's report could be confused with a keystroke (which keystroke?) ✔

Has powerline glyphs
The actual definition of powerline glyphs is rather slippery, and I'm not sure it's ethical to support their use, but I think it
would make a lot of people happy.

Supports invisible attribute ✔
OSC 50 Looks like VTE does some fancy things with OSC 50 beyond xterm's definition. ✔
Resize window — CSI 8;p1;p2;t ✔
OSC 12/112 (cursor color) ✔

APC vs OSC, BEL vs ST
neovim makes this distinction, which seems to be related to tmux and screen. What does tmux do with APC that others
do with OSC? ✔

CTC
The nosh guide states that CTC (CSI W) is only supported by xterm (but it's not documented in ctlseqs) and that others
require TBC+HTS

HPA The nosh guide states that HPA (CSI `) is only supported by xterm and that others require CHA (CSI G)
DECST8C Sets a tabstop every 8 characters. Not sure anyone cares. Mentioned by nosh guide.
DECNKM (application keypad) The nosh guide claims Putty doesn't support this, and you have to use DECKPAM and DECKPNM.

SGR 2 (faint)
Fish says that "dim" text is broken on macos for xterm-256color. I don't see SGR 2 in terminfo for anything remotely
modern. ✔

Line drawing alternate charset

1. Can you switch to alternate character set 0? Similar to https://invisible-island.net/ncurses/man/ncurses.3x.html#h3-
NCURSES_NO_UTF8_ACS
2. Are line drawing characters always narrow, or are they ambiguous width?

DECSCUSR 0

RESET_CURSOR: Boolean
Does DECSCUSR 0 set the cursor to its (possibly user-
configured) default value?

VTE, mintty, alacritty, and iTerm2 (nightly as of 5/14/2020) support this feature

It would be nice to necromance this bug when this is eventually resolved: https://github.
com/neovim/neovim/issues/4867

DECRQSS SGR

Not all terminals support DECRQSS. Some don't even parse the sequence correctly, causing some of it to be printed.
Reporting cursor shape is useful since it's otherwise unknowable until you change it. SGR reporting seems of dubious
value—Paul uses it to test if 256 color setting works, but that seems like a hack that this spec ought to obviate.

Zero-width joiner

ZWJ: Boolean
Zero-width joiners are supported for Emoji.

[in the future we may add more flags for zwj support outside
Emoji, if that turns out to be useful]

https://emojipedia.org/zero-width-joiner/
This is starting to show up frequently in Emoji. Not all terminals use it to join subsequent codepoints into a grapheme
cluster, causing them to emit the wrong number of cells. However, it's possible to use it for other purposes like in Indic
scripts [rfc5892.txt appendix a.2]. I'm sure there are more terminals with good Emoji support than good Devanagari
support.
More context here: https://github.com/fish-shell/fish-shell/issues/2652

CSI u

TODO: we need a test suite. I've asked Paul if he can provide
something.

CSI_U: Boolean
Will keystrokes be reported using the CSI u protocol?
CSI_U_AVAILABLE: Boolean
Will CSI > 4 ; X m enable/disable/reset CSI u (for x=1/0/unset),
and CSI > [4] n reset it to defaults?

http://www.leonerd.org.uk/hacks/fixterms/
kitty, mintty, iTerm2, and pangoterm implement this

Number of function keys

Number of function keys.

terminfo convention is to fill the kf* capabilities by listing all the unmodified function keys, then all the Shift-modified
keys, then all the Control-modified keys, then all the Shift-Control-modified keys, etc. until all 63 capabilities are full. If
an application assumes 12 function keys, and ncurses reports a keypress of "F27", it's pretty easy to figure out that's
actually Ctrl-F3.

Unfortunately, RXVT-family terminals do not support 12 function keys, they support 10 keys unmodified, or with Ctrl or
Alt, but 12 keys with Shift, Shift+Ctrl or Shift+Alt. Either way, if an application running inside RXVT receives F27 and
decodes that as Ctrl-F3, that's a bug - the user actually pressed Ctrl-F5.

Since rxvt-style terminals appear to be the only ones with this quirk, it might be reasonable for applications to apply it
based on "TERM matches rxvt*" but it'd be nice if there were a specific capability for it.

Unified key reporting

The current state of key reporting is a mess. There are many different standards for how function keys and arrow keys
get reported.

The end goal is CSI u or something like it, but it's not backward compatible enough to use all the time.

It would be nice to come up with a single spec for function keys, arrow keys, etc. that "just works" with typical settings.
That probably means something very much like xterm's defaults, since most of us lie and say TERM=xterrm*.

This is a big project that should not block feature reporting v1.
Unrecognized control sequences are parsed
properly Paul has some tests in libvterm unit tests. esctest has some too, as I recall.

Unicode wide characters, utf-8, etc.

Tim Allen wrote:
Things worth testing: if the terminal receives, say, an SGR sequence between a character and the next composing
character, what happens? What if a cursor-movement sequence occurs? What if the cursor-movement sequence
moves the cursor to where it already is? What happens when a full-width character is received while the cursor is in the
last (half-width) column?

https://github.com/mintty/mintty/issues/881#issuecomment-623875957
https://github.com/mintty/mintty/wiki/Tips

Context:
Recent discussion — https://github.com/mintty/mintty/issues/881
Older discussion — https://gitlab.freedesktop.org/terminal-wg/specifications/-/issues/8
Query to neovim — https://github.com/neovim/neovim/issues/12260
Query to fish — https://github.com/fish-shell/fish-shell/issues/6984
Query to irssi — https://github.com/irssi/irssi/issues/1190
Query to weechat — https://github.com/weechat/weechat/issues/1495
nosh guide: http://jdebp.eu/Softwares/nosh/guide/
neovim hacks: https://github.com/neovim/neovim/blob/master/src/nvim/tui/tui.c
Spec: https://docs.google.com/document/d/1f8f49lpNrqiimJSYl70SNejRmNsjrY6-Xk2goubf4jI/edit?usp=sharing

Feature Notes
88 color mode Looks like only rxvt has this.
CSI_GREATER Modern terminals generally parse csi well enough that these aren't necessary
CSI_EQUALS Modern terminals generally parse csi well enough that these aren't necessary
CSI_POSTFIX_MOD Modern terminals generally parse csi well enough that these aren't necessary

DECSET 1049 xterm addition, based on DECSET 49. Clears screen before switching to alternate. Per textshell, this is already ubiquitous among terminals that support an alt screen. ✔
DECSLPP 0-24 This conflicts with CSI t, which dtterm (and subsequently xterm) used for window & title manipulation which is more useful than DECSLPP.

