A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Data Help Desk Schedule (AGU 2022; Exhibit Hall Booth #1901) | ||||||||||||||
2 | Don't forget to check out the other Data Fair events at https://esipfed.org/DataHelpAGU22 | ||||||||||||||
3 | Day | Date | Start | End | Data Reference Desk Topic | Data Reference Desk Lead | Data Reference Desk Lead Institution | Data Help Desk Demo | Data Help Desk Demo Presenter | Data Help Desk Presenter Institution | Open Science Workshop or Resource Demo (big space) | Presenter | Topic Title | Description | Data Help Desk Presenter Institution |
4 | Monday | 12/12/22 | 15:00 | 17:00 | Data Management and Archiving | Ken Casey | NOAA National Center for Environmental Information | earthaccess: Python library to programmatically access NASA data | Luis Lopez | National Snow and Ice Data Center (NSIDC) | 15:00 | Mia Ricci, AGU Publications | Navigating Open Data, Open Access, and Funding Options, presented by Mia Ricci, AGU Publications | ||
5 | 15:30 | Jenny Lunn | Open Means Understandable: Writing An Effective Plain Language Summary About Your Article, presented by Jenny Lunn, AGU Publications | ||||||||||||
6 | 16:00 | Micaela Parker | The Ethos Lifecycle: Operationalizing ethics in data science, presented by Micaela Parker | The data science lifecycle model is a ubiquitous framework for describing the stages of research in a typical data science project. While helpful for illustrating parts of the research process, lifecycle workflows almost universally omit ethical considerations and societal contexts. By abstracting away the broader societal contexts, these lifecycle models do not adequately capture the way in which data scientists think, and the kinds of questions they must address while doing real world data science work. With the Data Science Ethos Lifecycle, we are addressing this need for a data science framework that includes explicit societal contexts and makes questions of social good actionable. The result is a more true-to-life model of the data science lifecycle that shows how societal questions are a constitutive part of the day-to-day work of a data scientist. | Academic Data Science Alliance | ||||||||||
7 | 16:30 | ||||||||||||||
8 | Monday | 12/12/22 | 17:00 | 18:00 | Data Repositories, Programming Language (Mathematica), Data Visualization and Analysis, Open Data Access and Principles, Early Career Advice, Atmospheric Chemistry data, Zero dimensional Box Modeling (Atmospheric Chemistry Models) | Colleen Rosales | OpenAQ | Introduction to Data Access and Services at the NASA GES DISC | James Acker | NASA GES DISC/ Adnet Inc. | 17:00 | ||||
9 | 17:30 | ||||||||||||||
10 | Tuesday | 12/13/22 | 10:00 | 12:00 | General Data Management, General Cloud Computing, Data Quality Assurance, Persistent Identifiers, Seismic Data Access, Software Development | Rob Casey | IRIS | HydroShare, Critical Zone Data Portal | Martin Seul | CUAHSI | 10:00 | Shelley Stall | Data Citation Primer -- A must have if you are publishing soon! presented by Shelley Stall | ||
11 | 10:30 | Mark Parsons, James Gallagher | How and why to cite data and software (in AGU journals), presented by Mark Parsons and James Gallagher | ||||||||||||
12 | 11:00 | ||||||||||||||
13 | 11:30 | Micaela Parker | The Ethos Lifecycle: Operationalizing ethics in data science, presented by Micaela Parker data science | The data science lifecycle model is a ubiquitous framework for describing the stages of research in a typical data science project. While helpful for illustrating parts of the research process, lifecycle workflows almost universally omit ethical considerations and societal contexts. By abstracting away the broader societal contexts, these lifecycle models do not adequately capture the way in which data scientists think, and the kinds of questions they must address while doing real world data science work. With the Data Science Ethos Lifecycle, we are addressing this need for a data science framework that includes explicit societal contexts and makes questions of social good actionable. The result is a more true-to-life model of the data science lifecycle that shows how societal questions are a constitutive part of the day-to-day work of a data scientist. | Academic Data Science Alliance | ||||||||||
14 | Tuesday | 12/13/22 | 12:00 | 14:00 | General Data Management, Data Best Practices, Data Architecture, Data Management Plans | Bruce Wilson | Oak Ridge National Laboratory Distributed Active Archive Center | 12:00 | |||||||
15 | 12:30 | ||||||||||||||
16 | 13:00 | Pranoti Asher | Data Management and my Career, presented by Pranoti Asher | Today’s geoscience employers are interested in hiring individuals with not only science expertise but also those who have experience in many of the power of soft skills. Come learn or share why experience or knowledge in data management can help your career. | |||||||||||
17 | 13:30 | AGU | |||||||||||||
18 | Tuesday | 12/13/22 | 14:00 | 16:00 | General Data Management, Model Data Management | Doug Schuster | NCAR | Data Access, Discovery, Subsetting | Michelle Thornton | Oak Ridge National Laboratory Distributed Active Archive Center | 14:00 | Julia Parrish | At the intersection of open data and community science, presented by Julia Parrish | ||
19 | 14:30 | Ben Bond-Lamberty | Getting started with reproducible documents in R, presented by Ben Bond-Lamberty | ||||||||||||
20 | 15:00 | Ben Bond-Lamberty | Effective, efficient, and fair peer reviewing, presented by Ben Bond-Lamberty | ||||||||||||
21 | 15:30 | Mia Ricci, AGU Publications | AGU Pubs - Diversity Equity Inclusion and Accesibility, presented by Mia Ricci, AGU Publications | ||||||||||||
22 | Tuesday | 12/13/22 | 16:00 | 18:00 | Community Management, General Data Management, Data Repositories, Data Management Plans, Data Publication, Metadata | Megan Carter Orlando | Earth Science Information Partners (ESIP) | Ocean Data, AWS, Argo Data & More | Steve Diggs | Scripps Institution of Oceanography | 16:00 | ||||
23 | 16:30 | ||||||||||||||
24 | 17:00 | ||||||||||||||
25 | 17:30 | ||||||||||||||
26 | Wednesday | 12/14/22 | 10:00 | 12:00 | General Data Management, Metadata, PIDs, DMPs, Software/Data Carpentries, USGS ScienceBase | Madison Langseth | U.S. Geological Survey | Heliophysics Data and Open Science | Ryan McGranaghan | NASA Center for HelioAnalytics | 10:00 | Shelley Stall | Software Citation Primer -- Get prepared for publication! presented by Shelley Stall | ||
27 | 10:30 | Mark Parsons, James Gallagher | How and why to cite data and software (in AGU journals), presented by Mark Parsons and James Gallagher | ||||||||||||
28 | 11:00 | ||||||||||||||
29 | 11:30 | ||||||||||||||
30 | Wednesday | 12/14/22 | 12:00 | 14:00 | OpenAQ Air Quality Database | Chris Hagerbaumer | OpenAQ | OpenAQ Air Quality Database | Colleen Rosales | OpenAQ | 12:00 | Kerstin Lehnert & Saebyul Choe | Physical Samples: Identifiers, Citation, Metadata and more with SESAR and the IGSN, presented by Kerstin Lehnert & Saebyul Choe | ||
31 | 12:30 | ||||||||||||||
32 | 13:00 | ||||||||||||||
33 | 13:30 | ||||||||||||||
34 | Wednesday | 12/14/22 | 14:00 | 16:00 | Data ethics, General Data Management, Arctic data issues | Natasha Haycock-Chavez | Arctic Data Center | CLIVAR and Carbon Hydrographic Data Office (CCHDO) | Karen Stocks | Scripps Institution of Oceanography | 14:00 | ||||
35 | 14:30 | Kendal Morris | Open science meta-analysis: easier than you think, presented by Kendal Morris | Sharing my initial experience in fully open and community-reproducible science | |||||||||||
36 | 15:00 | ||||||||||||||
37 | 15:30 | Billy Williams | DEI in the Earth and Space Sciences: Progress and Opportunities – Perspective from the Front-Lines, presented by Billy Williams, AGU | ||||||||||||
38 | Wednesday | 12/14/22 | 16:00 | 18:00 | General Data Management, Information Management, Metadata, Data Repositories, Programming, Data Publication, Data Visualization, Data Analysis, Data Management Plans, Python Packaging | Jake Gearon | Indiana University Bloomington | NASA Astrophysics Data System (ADS) (including extending to all NASA Science Mission Directorate Disciplines) | Alberto Accomazzi | Harvard-Smithsonian Center for Astrophysics | 16:00 | Shelley Stall | Working Openly as a Team, presented by Shelley Stall, AGU Open Science Leadership | ||
39 | 16:30 | ||||||||||||||
40 | 17:00 | ||||||||||||||
41 | 17:30 | ||||||||||||||
42 | Thursday | 12/15/22 | 10:00 | 12:00 | General Data Management, Data Repositories, Data Management Plans, Data Publication, Ocean Data Best Practices, Metadata | Danie Kinkade | Biological and Chemical Oceanography Data Management Office (BCO-DMO) | Data Management, Data Repositories, Hydrologic data, HydroShare | Clara Cogswell | CUAHSI | 10:00 | Shelley Stall | Digital Presence, presented by Shelley Stall, AGU Open Science Leadership | ||
43 | 10:30 | ||||||||||||||
44 | 11:00 | Jenny Lunn | Open Means Understandable: Writing An Effective Plain Language Summary About Your Article, presented by Jenny Lunn, AGU Publications | ||||||||||||
45 | 11:30 | ||||||||||||||
46 | 12:00 | ||||||||||||||
47 | Thursday | 12/15/22 | 12:00 | 13:00 | General Data Management (especially Ocean Data), Amazon Web Services, Argo Data & more | Steve Diggs | Scripps Institution of Oceanography | USAP-DC, Antarctic Data, Marine Seismic Data, Bathymetry Data | Frank Nitsche | Columbia University | 12:30 | ||||
48 | |||||||||||||||
49 | |||||||||||||||
50 | |||||||||||||||
51 | |||||||||||||||
52 | |||||||||||||||
53 | |||||||||||||||
54 | |||||||||||||||
55 | |||||||||||||||
56 | |||||||||||||||
57 | |||||||||||||||
58 | |||||||||||||||
59 | |||||||||||||||
60 | |||||||||||||||
61 | |||||||||||||||
62 | |||||||||||||||
63 | |||||||||||||||
64 | |||||||||||||||
65 | |||||||||||||||
66 | |||||||||||||||
67 | |||||||||||||||
68 | |||||||||||||||
69 | |||||||||||||||
70 | |||||||||||||||
71 | |||||||||||||||
72 | |||||||||||||||
73 | |||||||||||||||
74 | |||||||||||||||
75 | |||||||||||||||
76 | |||||||||||||||
77 | |||||||||||||||
78 | |||||||||||||||
79 | |||||||||||||||
80 | |||||||||||||||
81 | |||||||||||||||
82 | |||||||||||||||
83 | |||||||||||||||
84 | |||||||||||||||
85 | |||||||||||||||
86 | |||||||||||||||
87 | |||||||||||||||
88 | |||||||||||||||
89 | |||||||||||||||
90 | |||||||||||||||
91 | |||||||||||||||
92 | |||||||||||||||
93 | |||||||||||||||
94 | |||||||||||||||
95 | |||||||||||||||
96 | |||||||||||||||
97 | |||||||||||||||
98 | |||||||||||||||
99 | |||||||||||||||
100 |