ABCDE
1
#WeekWednesday
8:00-12:00 - Room 41, San Pietro in Vincoli
Thursday
13:00-15:00 - Room 41, San Pietro in Vincoli
Friday
8:00-10:00 - Room 41, San Pietro in Vincoli
2
126-Feb-2024AI: Introduction. Propositional Logic: Syntax.
References: Slides, lecture notes, [2] Ch.1, 2, 7
Video
ML: Introduction to ML.
References: Slides, lecture notes, [2] Ch.19.1, 19.2
Video
AI: Propositional Logic: Formula Tree, Interpretations, Satisfaction, Evaluation.
References: Slides, lecture notes, [2] Ch.7
Video
3
24-Mar-2024AI: Propositional Logic: Truth Tables, Normal Forms (DNF, CNF), Validity, Satisfiability, Unsatisfiability, Logical Implication and Logical Equivalence.
References: Slides, lecture notes, [2] Ch.7
Video
ML: Evaluation.
References: Slides, lecture notes, [2] Ch.19.3.4, 19.4, up to 19.4.2 included.
Video
AI: Tableaux for propositional Logic.
References: Slides, lecture notes.
Video
4
311-Mar-2024AI: Tableaux for propositional Logic. DPLL.
References: Slides, lecture notes.

Video
Lecture cancelledML: Probability 1.
References: Slides, lecture notes, [2] Ch.19.4, 12.1-12.6
Video
5
418-Mar-2024AI: DPLL, Tseitin's transformation. Exercises on porpositional logic.
References: Slides, lecture notes.
Video
ML: Probability 2.
References: Slides, lecture notes, [2] Ch.19.4, 12.1-12.6
Video
Lecture cancelled
6
525-Mar-2024AI: Excercises on propositional logic. First-Order Logic: introduction, syntax, semantics.
Video 1
: Lecture
Video 2 (from min 8.00): Exercises on Propositional Logic Modeling and Reasoning using SAT solvers. (Guest Lecture by Dr. Parretti from 22/23 edition)
Easter break
Easter break
7
61-Apr-2024AI: First order Logic: Semantics.
References: Slides, lecture notes. [2] Ch. 8.1, 8.2, 8.3.
Video
ML: Probability 3. Linear classification.
References: Slides, lecture notes, [2] 19.6.4
Video
AI: First order Logic: Semantics.
References: Slides, lecture notes. Satisfaction, Logical Implication. Undecidability of Satisfaction. [2] Ch. 8.1, 8.2, 8.3.
Video
8
78-Apr-2024AI: Introduction to FOL tableaux.
References: Slides, Lecture notes.
Video
ML: Linear classification.
References: Slides, lecture notes, [2] Ch.19.6.4
Video
AI: FOL Tableaux
References: Slides, lecture notes.
Video
9
815-Apr-2024AI: Query Evaluation.
References: Slides, Lecture notes.
Video
ML: Linear classification. Linear Regression.
References: Slides, lecture notes, [2] Ch.19.6.1 - 19.6.3, 19.6.4, 19.6.5, 19.7.5
Video
AI: Formal Proof systems. Hilbert's formal proof system. Exercises on FOL formalization.
References: Slides, lecture notes
Video
10
922-Apr-2024AI: Introduction to the Situation Calculus.
References: Slides, Lecture notes.
Video
Liberation dayAI: Situation Calculus.
References: Slides, Lecture notes.
Video
11
1029-Apr-2024Labour dayAI: Situation Calculus.
References: Slides, Lecture notes.
Video (no audio :( )
12
116-May-2024AI: Situation Calculus.
References: Slides, Lecture notes.
Video
ML: Neural Networks.
References: Slides, lecture notes. [2] Ch. 21.1, 21.2
Video
AI: Situation Calculus.
References: Slides, Lecture notes.
Video
13
1213-May-2024AI: Situation Calculus, Introduction to Planning in AI.
References: Slides, Lecture notes. [2] Ch. 3, up to 3.5.3 (excluded)
Video
ML: Neural Networks. Introduction to Reinforcement Learning: MDPs.
References: Slides, Lecture notes. [3] Ch. 3.
Videos on NN implementation (past year labs, by Dr. Cipollone):
- ANN Regression
- ANN Classification
Lecture Video
AI: Planning in AI. Uninformed Search.
References: Slides, Lecture notes. [2] Ch. 3, up to 3.5.3 (excluded)
Video
14
1320-May-2024
8.00-10.00 ML: MDPs and Reinforcement Learning.
References: Slides, Lecture notes. [3] Ch. 3.

10.00-12.00 AI: Planning in AI. STRIPS and PDDL.
References: Slides, Lecture notes. [2] Ch. 3, up to 3.5.3 (excluded)
Video
ML: Q-learning.
References: Slides, Lecture notes. [3] Ch. 6, up to 6.6 (excluded)
Video
AI: Planning in AI. ADL and PDDL
References: Slides, Lecture notes.
Video
15
1427-May-2024
8.00-10.00 ML: Tabular Q-learning.
References: Slides, Lecture notes. [3] Ch. 6, up to 6.6 (excluded)
10.00-12.00 AI: Heuristic Search
References: Slides, Lecture notes. [2] Ch. 11.1 - 11.3 (included)
Video
ML: Deep Q-learning with DQN. Replay Memory.
References: Slides, Lecture notes.
Video on RL and Q-Learning with Gymnasium (By Dr. Cipollone, past year labs)
Lecture Video
AI: Exam Exercise on PDDL modeling, transition systems and forward search.
Video