| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Students can access course syllabi on the CSDSE course listings website: https://cs.shanghai.nyu.edu/ (Academics - Courses). | ||||||||||||||||||||||||
2 | Subject Code | Catalog Number | Course Title | Class Course Attribute Value Description | Pre-requisite | ||||||||||||||||||||
3 | CSCI-SHU | 220 | Algorithms | Data Science Elective Concentration in AI | Prereq for CSCI-SHU 220 is Data Structures AND (Discrete Math OR Linear Algebra OR Honors Linear Algebra). | ||||||||||||||||||||
4 | CSCI-SHU | 376 | Natural Language Processing | Data Science Elective Concentration in AI | Prereq for CSCI-SHU 376 is CSCI-SHU 11 Introduction to Computer Programming and (CSCI-SHU 360 Marchine Learning or MATH-SHU 235 Probability and Statistic or MATH-SHU 238 Theory of Probability) | ||||||||||||||||||||
5 | DATS-SHU | 377 | Computer Vision | Data Science Elective Concentration in AI | Prereq for DATS-SHU 377 is CSCI-SHU 101 Introduction to Computer Programming and (CSCI-SHU 360 Marchine Learning or MATH-SHU 235 Probability and Statistic or MATH-SHU 238 Theory of Probability). | ||||||||||||||||||||
6 | DATS-SHU | 235 | Information Visualization | Data Science Elective Concentration in AI | Prereq or coreq for DATS-SHU 235 is CSCI-SHU 210 Data Structures. | ||||||||||||||||||||
7 | DATS-SHU | 369 | Machine Learning with Graphs | Data Science Elective Concentration in AI | Prereq for DATS-SHU 369 is CSCI-SHU 360 Marchine Learning or MATH-SHU 235 Probability and Statistic. | ||||||||||||||||||||
8 | ECON-SHU | 3 | Microeconomics | Data Science Elective Concentration in Economics | prereq for ECON-SHU 3 is Calculus or above. | ||||||||||||||||||||
9 | ECON-SHU | 1 | Principles of Macroeconomics | Data Science Elective Concentration in Economics | |||||||||||||||||||||
10 | BUSF-SHU | 303 | Corporate Finance | Data Science Elective Concentration in Finance | Prereq for BUSF-SHU 303 is BUSF-SHU 202 | ||||||||||||||||||||
11 | BUSF-SHU | 202 | Foundations of Finance | Data Science Elective Concentration in Finance | Prereq for BUSF-SHU 202 is ECON-SHU 3 Microeconomics and (BUSF-SHU 101 Statistics for Business & Econ or MATH-SHU 235 Probability and Statistics) | ||||||||||||||||||||
12 | BUSF-SHU | 250 | Principles of Financial Accounting | Data Science Elective Concentration in Finance | |||||||||||||||||||||
13 | ECON-SHU | 3 | Microeconomics | Data Science Elective Concentration in Finance | prereq for ECON-SHU 3 is Calculus or above. | ||||||||||||||||||||
14 | BIOL-SHU | 21 | Foundations of Biology I | Data Science Elective Concentration in Genomics | Prereq/ Co-req for BIOL-SHU 21 is MATH-SHU 131 or MATH-SHU 201 | ||||||||||||||||||||
15 | BUSF-SHU | 202 | Foundations of Finance | Data Science Elective Concentration in Marketing | Prereq for BUSF-SHU 202 is ECON-SHU 3 Microeconomics and (BUSF-SHU 101 Statistics for Business & Econ or MATH-SHU 235 Probability and Statistics) | ||||||||||||||||||||
16 | BUSF-SHU | 250 | Principles of Financial Accounting | Data Science Elective Concentration in Marketing | |||||||||||||||||||||
17 | ECON-SHU | 3 | Microeconomics | Data Science Elective Concentration in Marketing | prereq for ECON-SHU 3 is Calculus or above. | ||||||||||||||||||||
18 | MKTG-SHU | 1 | Introduction to Marketing | Data Science Elective Concentration in Marketing | Prereq for MKTG-SHU 1 is not open to first-semester students. | ||||||||||||||||||||
19 | MATH-SHU | 142 | Honors Linear Algebra II | Data Science Elective Concentration in Mathematics | Prereq for MATH-SHU 142 is MATH-SHU 141 Honors Linear Algebra I, or [ MATH-SHU 140 Linear Algebra and MATH-SHU 143 Foundations of Mathematical Methods] | ||||||||||||||||||||
20 | MATH-SHU | 238 | Honors Theory of Probability | Data Science Elective Concentration in Mathematics | PREREQ FOR MATH-SHU 238 is Grade C or better in either MATH-SHU 151 (Multivariable Calculus) or MATH-SHU 329 (Honors Analysis II), and grade C or better in either MATH-SHU 140 (Linear Algebra) or MATH-SHU 141 (Honors Linear Algebra I). | ||||||||||||||||||||
21 | SOCS-SHU | 160 | Introduction to International Politics | Data Science Elective Concentration in Poli Sci | |||||||||||||||||||||
22 | PSYC-SHU | 234 | Developmental Psychology | Data Science Elective Concentration in Psychology | Prereq for PSYC-SHU 234 is PSYC-SHU 101 Intro to Pscyhology or its equivalencies. | ||||||||||||||||||||
23 | PSYC-SHU | 101 | Introduction to Psychology | Data Science Elective Concentration in Psychology | |||||||||||||||||||||
24 | SOCS-SHU | 350 | Empirical Research Practice | Data Science Elective Concentration in Psychology | PREREQ FOR SOCS-SHU 350 is Sophomore standing or above required. PSYC-SHU 101 recommended but not required. | ||||||||||||||||||||
25 | SOCS-SHU | 334 | Legal Psychology | Data Science Elective Concentration in Psychology | Pre-req for SOCS-SHU 334 is PSYC-SHU 101 Intro to Psychology OR SOCS-SHU 220 Law and Society in the US. | ||||||||||||||||||||
26 | BUSF-SHU | 101 | Statistics for Business and Economics | Data Science Foundational | |||||||||||||||||||||
27 | CSCI-SHU | 101 | Introduction to Computer and Data Science | Data Science Foundational | |||||||||||||||||||||
28 | MATH-SHU | 238 | Honors Theory of Probability | Data Science Foundational | PREREQ FOR MATH-SHU 238 is Grade C or better in either MATH-SHU 151 (Multivariable Calculus) or MATH-SHU 329 (Honors Analysis II), and grade C or better in either MATH-SHU 140 (Linear Algebra) or MATH-SHU 141 (Honors Linear Algebra I). | ||||||||||||||||||||
29 | MATH-SHU | 235 | Probability and Statistics | Data Science Foundational | Prereq for MATH-SHU 235 is Grade C or better in either MATH-SHU 131 (Calculus) or MATH-SHU 201 (Honors Calculus). Anti-requisite: MATH-SHU 238 Honors Theory of Probability. | ||||||||||||||||||||
30 | CSCI-SHU | 220 | Algorithms | Data Science Required Data Analysis | Prereq for CSCI-SHU 220 is Data Structures AND (Discrete Math OR Linear Algebra OR Honors Linear Algebra). | ||||||||||||||||||||
31 | CSCI-SHU | 360 | Machine Learning | Data Science Required Data Analysis | Prereq for CSCI-SHU 360 is ICP, Calculus, Probability and Statistics OR Theory of Probability OR Statistics for Business and Economics OR Linear Algebra | ||||||||||||||||||||
32 | DATS-SHU | 235 | Information Visualization | Data Science Required Data Analysis | Prereq or coreq for DATS-SHU 235 is CSCI-SHU 210 Data Structures. | ||||||||||||||||||||
33 | ECON-SHU | 301 | Econometrics | Data Science Required Data Analysis | Prereq for ECON-SHU 301 is Statistics (BUSF-SHU 101 or MATH-SHU 233 or MATH-SHU 234 or MATH-SHU 235 or MATH-SHU 238 or SOCS-SHU 210 or SOCSC-UH 1010Q or ECON-UA 18 or ECON-UA 20 or STAT-UB 1 or STAT-UB 103 or an equivalent statistics course.) | ||||||||||||||||||||
34 | ECON-SHU | 9301 | Econometrics | Data Science Required Data Analysis | Prereq for ECON-SHU 301 is Statistics (BUSF-SHU 101 or MATH-SHU 233 or MATH-SHU 234 or MATH-SHU 235 or MATH-SHU 238 or SOCS-SHU 210 or SOCSC-UH 1010Q or ECON-UA 18 or ECON-UA 20 or STAT-UB 1 or STAT-UB 103 or an equivalent statistics course.) | ||||||||||||||||||||
35 | CSCI-SHU | 213 | Databases | Data Science Required Data Management | Prereq for CSCI-SHU 213 is CSCI-SHU 210 Data Structures. | ||||||||||||||||||||
36 | MATH-SHU | 328 | Honors Analysis I | Data Science Required Mathematics | Prereq for MATH-SHU 328 is Grade C or better in MATH-SHU 201 (Honors Calculus), or grade A- or better in MATH-SHU 131 (Calculus) | ||||||||||||||||||||
37 | MATH-SHU | 140 | Linear Algebra | Data Science Required Mathematics | Prereq for MATH-SHU 140 is Pre-placement by Faculty based on high-school grades, or NYU SH “Calculus and Linear Algebra” placement exam, or a grade of C or better in MATH-SHU 9 (Precalculus). Anti-Requisite: MATH-SHU 141. | ||||||||||||||||||||
38 | MATH-SHU | 151 | Multivariable Calculus | Data Science Required Mathematics | Prereq for MATH-SHU 151 is Grade C or better in either MATH-SHU 131 (Calculus) or MATH-SHU 201 (Honors Calculus). Anti-requisite: MATH-SHU 329 (Honors Analysis II). | ||||||||||||||||||||
39 | CSCI-SHU | 210 | Data Structures | Data Science Required Programming & Comp Science | Prereq for CSCI-SHU 210 is ICS or A- in ICP. | ||||||||||||||||||||
40 | |||||||||||||||||||||||||
41 | |||||||||||||||||||||||||
42 | |||||||||||||||||||||||||
43 | |||||||||||||||||||||||||
44 | |||||||||||||||||||||||||
45 | |||||||||||||||||||||||||
46 | |||||||||||||||||||||||||
47 | |||||||||||||||||||||||||
48 | |||||||||||||||||||||||||
49 | |||||||||||||||||||||||||
50 | |||||||||||||||||||||||||
51 | |||||||||||||||||||||||||
52 | |||||||||||||||||||||||||
53 | |||||||||||||||||||||||||
54 | |||||||||||||||||||||||||
55 | |||||||||||||||||||||||||
56 | |||||||||||||||||||||||||
57 | |||||||||||||||||||||||||
58 | |||||||||||||||||||||||||
59 | |||||||||||||||||||||||||
60 | |||||||||||||||||||||||||
61 | |||||||||||||||||||||||||
62 | |||||||||||||||||||||||||
63 | |||||||||||||||||||||||||
64 | |||||||||||||||||||||||||
65 | |||||||||||||||||||||||||
66 | |||||||||||||||||||||||||
67 | |||||||||||||||||||||||||
68 | |||||||||||||||||||||||||
69 | |||||||||||||||||||||||||
70 | |||||||||||||||||||||||||
71 | |||||||||||||||||||||||||
72 | |||||||||||||||||||||||||
73 | |||||||||||||||||||||||||
74 | |||||||||||||||||||||||||
75 | |||||||||||||||||||||||||
76 | |||||||||||||||||||||||||
77 | |||||||||||||||||||||||||
78 | |||||||||||||||||||||||||
79 | |||||||||||||||||||||||||
80 | |||||||||||||||||||||||||
81 | |||||||||||||||||||||||||
82 | |||||||||||||||||||||||||
83 | |||||||||||||||||||||||||
84 | |||||||||||||||||||||||||
85 | |||||||||||||||||||||||||
86 | |||||||||||||||||||||||||
87 | |||||||||||||||||||||||||
88 | |||||||||||||||||||||||||
89 | |||||||||||||||||||||||||
90 | |||||||||||||||||||||||||
91 | |||||||||||||||||||||||||
92 | |||||||||||||||||||||||||
93 | |||||||||||||||||||||||||
94 | |||||||||||||||||||||||||
95 | |||||||||||||||||||||||||
96 | |||||||||||||||||||||||||
97 | |||||||||||||||||||||||||
98 | |||||||||||||||||||||||||
99 | |||||||||||||||||||||||||
100 | |||||||||||||||||||||||||