A | B | C | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Notes & Caveats: Each Astro2020 science panel was effectively asked to create a partial Science Traceability Matrix for their Key Science Questions, i.e. coupling science to required capabilties, although each panel approached this in a somewhat different way. Some panels in fact listed explicit required measurements that read almost like a Level 1 requirement for a future observtory, while other panels were less specific. Furthermore, because each capability (of course) addresses multiple science (sub)-questions, any attempt to synthesize the entire report to a clean STM is futile. We therefore don't bother, and just provide screenshots of the "Required Capabilities" tables from the sub-panel reports. You will probably need to use the "Zoom" feature (under the "View" menu above) in order to see them clearly - sorry! | |||||||||||||||||||||||
2 | Science Area (Decadal Panel) | Key Science Questions (or Discovery Area) | Sub-Question | Mapping of Science to Capabilities | Precursor Science Workshop Notes | |||||||||||||||||||
3 | Compact Objects & Energetic Phenomena | B-Q1: What are the mass and spin distributions of Neutron Stars and Stellar Black Holes? | B-Q1a. What do the mass and spin distributions tell us about neutron star and balck hole formation and evolution? | |||||||||||||||||||||
4 | B-Q1b: What is the population of noninteracting or isolated neutron stars and stellar-mass black holes? | |||||||||||||||||||||||
5 | B-Q1c: What is the equation of state of ultradense matter? | |||||||||||||||||||||||
6 | B-Q2: What powers the diversity of explosive phenomena across the electromagnetic spectrum? | B-Q2a: When and how are transients powered by neutron stars or black holes? | ||||||||||||||||||||||
7 | B-Q2b: When and how are transients powered by shocks? | |||||||||||||||||||||||
8 | B-Q2c: When and how are transients powered by radioactivity? | |||||||||||||||||||||||
9 | B-Q2d: What are the unexplored frontiers in transient phenomena? | |||||||||||||||||||||||
10 | B-Q3: Why do some compact objects eject material in nearly lightspeed jets, and what is that material made of? | B-Q3a: How do jets launch and accelerate? | ||||||||||||||||||||||
11 | B-Q3b: What are jets composed of and how are particles accelerated within them? | |||||||||||||||||||||||
12 | B-Q3c: Are tev-pev neutrinos and ultra-high-energy cosmic rays produced in relativistic jets? | |||||||||||||||||||||||
13 | B-Q4: What seeds supermassive black holes and how do they grow? | B-Q4a: How are the seeds of supermassive black holes formed? | ||||||||||||||||||||||
14 | B-Q4b: How do central black holes grow? | |||||||||||||||||||||||
15 | Discovery Area B-DA: Transforming our view of the Universe by combining new information from light, particles, and gravitational waves | Eight Discovery Area sub-questions; see pages B-12 through B-15 of the report (starting on page 239 of this pdf) | ||||||||||||||||||||||
16 | Cosmology | C-Q1: What set the hot big bang in motion? | C-Q1a: Primordial gravitational waves | |||||||||||||||||||||
17 | C-Q1b: Non-gaussianity of the large-scale structure of the universe | |||||||||||||||||||||||
18 | C-Q1c: The initial power spectrum of density fluctuations | |||||||||||||||||||||||
19 | C-Q2: What are the properties of dark matter and the dark sector? | C-Q2a: Dark sector signatures in small-scale structure | ||||||||||||||||||||||
20 | C-Q2b: Dark sector imprints on big bang nucleosynthesis and recombination | |||||||||||||||||||||||
21 | C-Q2c: Annihilation by-products | |||||||||||||||||||||||
22 | C-Q3: What physics drives the cosmic expansion and large-scale evolution of the universe? | C-Q3a: The physics of cosmic acceleration | ||||||||||||||||||||||
23 | C-Q4b: The properties of neutrinos | |||||||||||||||||||||||
24 | C-Q3c: End-to-end tests of cosmology | |||||||||||||||||||||||
25 | C-Q4: How will measurements of gravitational waves reshape our cosmological view? | C-Q4a: The stochastic gravitational wave background | ||||||||||||||||||||||
26 | C-Q4b: Standard sirens as a new probe of the cosmic distance scale | |||||||||||||||||||||||
27 | C-Q4c: Light fields and other novel phenomena | |||||||||||||||||||||||
28 | Discovery Area C-DA: The Dark Ages as a cosmological probe | C-DA1: The end of the dark ages | ||||||||||||||||||||||
29 | C-DA2: The future of primoridal density mapping | |||||||||||||||||||||||
30 | Galaxies | D-Q1: How did the intergalactic medium and the first sources of radiation evolve from cosmic dawn through the epoch of reionization? | D-Q1a: Detailed thermal history of the intergalactic medium and the topology of reionization | |||||||||||||||||||||
31 | D-Q1b: Production of ionizing photons and their escape into the intergalactic medium | |||||||||||||||||||||||
32 | D-Q1c: Properties of the first stars, galaxies, and black holes | |||||||||||||||||||||||
33 | D-Q2: How do gas, metals, and dust flow into, through, and out of galaxies? | D-Q2a: The acquisition of the gas necessary to fuel star formation | ||||||||||||||||||||||
34 | D-Q2b: The production, distribution, and cycling of metals | |||||||||||||||||||||||
35 | D-Q2c: The coupling of small-scale energetic feedback processes to the larger gaseous reservoir | |||||||||||||||||||||||
36 | D-Q2d: The physical conditions of the circumgalactic medium | |||||||||||||||||||||||
37 | D-Q3: How do supermassive black holes form and how is their growth coupled to the evolution of their host galaxies? | D-Q3a: The seeds of supermassive black holes | ||||||||||||||||||||||
38 | D-Q3b: Existence and formation of intermediate mass black holes | |||||||||||||||||||||||
39 | D-Q3c: Comprehensive census of supermassive black hole growth | |||||||||||||||||||||||
40 | D-Q3d: The physics of black hole feedback | |||||||||||||||||||||||
41 | D-Q4: How do the histories of galaxies and their dark matter halos shape their observable properties? | D-Q4a: The dynamical and chemical history of the milky way | ||||||||||||||||||||||
42 | D-Q4b: The threshold of galaxy formation | |||||||||||||||||||||||
43 | D-Q4c: Connecting local galaxies to high-redshift galaxies | |||||||||||||||||||||||
44 | D-Q4d: The evolution of morphologies, gas content, kinematics, and chemical properties of galaxies | |||||||||||||||||||||||
45 | Discovery Area D-DA: Mapping the circumgalactic medium and intergalactic medium in emission | No DA sub-questions from this panel | ||||||||||||||||||||||
46 | Exoplanets, Astrobiology, and the Solar System | E-Q1: What is the range of planetary system architectures and is the configuration of the solar system common? | E-Q1a: What are the demographics of planets beyond the reach of current surveys? | |||||||||||||||||||||
47 | E-Q1b: What are the typical architectures of planetary systems? | |||||||||||||||||||||||
48 | E-Q1c: How common is planetary migration, how does it affect the rest of the planetary system, and what are the observable signatures? | |||||||||||||||||||||||
49 | E-Q1d: How does the distribution of dust and small bodies in mature systems connect to the current and past dynamical states within planetary systems? | |||||||||||||||||||||||
50 | E-Q1e: Where are the nearby potentially habitable planets and what are the characteristics of their planetary systems? | |||||||||||||||||||||||
51 | E-Q2: What are the properties of individual planets and which processes lead to planetary diversity? | E-Q2a: Which physical processes govern a planet’s interior structure? | ||||||||||||||||||||||
52 | E-Q2B: How does a planet’s interior structure and composition connect to its surface and atmosphere? | |||||||||||||||||||||||
53 | E-Q2c: What fundamental planetary parameters and processes determine the complexity of planetary atmospheres? | |||||||||||||||||||||||
54 | E-Q2d: How does a planet’s interaction with its host star and planetary system influence its atmospheric properties over all time scales? | |||||||||||||||||||||||
55 | E-Q2e: How do giant planets fit within a continuum of our understanding of all objects? | |||||||||||||||||||||||
56 | E-Q3: How do habitable environments arise and evolve within the context of their planetary systems? | E-Q3a: How are potentially habitable environments formed? | ||||||||||||||||||||||
57 | E-Q3b: What processes influence the habitability of environments? | |||||||||||||||||||||||
58 | E-Q3c: What is the range of potentially habitable environments around different types of stars? | |||||||||||||||||||||||
59 | E-Q3d: What are the key observable characteristics of habitable planets? | |||||||||||||||||||||||
60 | E-Q4: How can signs of life be identified and interpreted in the context of their planetary environments? | E-Q4a: What biosignatures should we look for? | ||||||||||||||||||||||
61 | E-Q4b: How will we interpret the biosignatures that we see? | |||||||||||||||||||||||
62 | E-Q4c: Do any nearby planets exhibit biosignatures? | |||||||||||||||||||||||
63 | Discovery Area E-DA: The search for life on exoplanets | No DA sub-questions from this panel | ||||||||||||||||||||||
64 | Interstellar Medium / Star and Planet Formation | F-Q1: How do star-forming structures arise from and interact with, the diffuse interstellar medium? | F-Q1a: What sets the density, temperature, and magnetic structure of the diffuse ism, enabling the formation of molecular clouds? | |||||||||||||||||||||
65 | F-Q1b: How do molecular clouds form from, and interact with, their environment? | |||||||||||||||||||||||
66 | F-Q1c: How does injection of energy, momentum, and metals from stars (“stellar feedback”) drive the circulation of matter between phases of the ism and cgm? | |||||||||||||||||||||||
67 | F-Q2: What regulates the structure and motions within molecular clouds? | F-Q2a: What processes are responsible for the observed velocity fields in molecular clouds? | ||||||||||||||||||||||
68 | F-Q2b: What is the origin and prevalence of high-density structures in molecular clouds and what role do they play in star formation? | |||||||||||||||||||||||
69 | F-Q2c: What generates the observed chemical complexity of molecular gas? | |||||||||||||||||||||||
70 | F-Q3: How does gas flow from parsec scales down to protostars and their disks? | F-Q3a: How do dense molecular cloud cores collapse to form protostars and their disks? | ||||||||||||||||||||||
71 | F-Q3b: How do protostars accrete from envelopes and disks, and what does this imply for protoplanetary disk transport and structure? | |||||||||||||||||||||||
72 | F-Q3c: Is the stellar initial mass function universal? | |||||||||||||||||||||||
73 | F-Q4: Is planet formation fast or slow? | F-Q4a: What are the origins and demographics of disk substructures? | ||||||||||||||||||||||
74 | F-Q4b: What is the range of physical environments available for planet formation? | |||||||||||||||||||||||
75 | F-Q4c: How do turbulence and winds influence the evolution of structure in disks? | |||||||||||||||||||||||
76 | Discovery Area F-DA: Detecting & characterizing forming planets | F-DA1: How do planets and their satellites grow? | ||||||||||||||||||||||
77 | F-DA2: What are the atmospheres of long-period giant planets like at their formation epoch? | |||||||||||||||||||||||
78 | F-DA3: How do the orbital architectures of planetary systems evolve? | |||||||||||||||||||||||
79 | Stars, the Sun, and Stellar Populations | G-Q1: What are the most extreme stars and stellar populations? | No science sub-questions from this panel | |||||||||||||||||||||
80 | G-Q2: How does multiplicity affect the way a star lives and dies? | |||||||||||||||||||||||
81 | G-Q3: What would stars look like if we could view them like we do the sun? | |||||||||||||||||||||||
82 | G-Q4: How do the sun and other stars create space weather? | |||||||||||||||||||||||
83 | Discovery Area G-DA: "Industrial-scale" spectroscopy | |||||||||||||||||||||||
84 | ||||||||||||||||||||||||
85 | ||||||||||||||||||||||||
86 | ||||||||||||||||||||||||
87 | ||||||||||||||||||||||||
88 | ||||||||||||||||||||||||
89 | ||||||||||||||||||||||||
90 | ||||||||||||||||||||||||
91 | ||||||||||||||||||||||||
92 | ||||||||||||||||||||||||
93 | ||||||||||||||||||||||||
94 | ||||||||||||||||||||||||
95 | ||||||||||||||||||||||||
96 | ||||||||||||||||||||||||
97 | ||||||||||||||||||||||||
98 | ||||||||||||||||||||||||
99 | ||||||||||||||||||||||||
100 |