| Species Name | Groups
A: Flynn & Jacob &
Mistie | B: Sofia &
Nohea | C. Steph &
Jayden | D: Eva +
Melssa | E: Kat +
Marcella | F: Kylie + Alex | G: Kedhar + Bridget | H: Matthew +
Kai | I: Charlotte +
Gobind | | | | | | | | | | |--|--|---------------------|----------------------|--------------------|----------------------|-----------------|-----------------------------------|---------------------|--------------------------|--|--|--|--|--|--|--|--|--| | rwn Fish (Amphiprion
chrysopterus 'Atoti) | х | × | | × | × | × | | × | × | | | | | | | | | | | canthurus trigostegus
Manini) | × | | × | | | | | | | | | | | | | | | | | readfin Butterfly Fish
Chaetodon auriga) | | | | | | × | | | | | | | | | | | | | | Dascylus aruanus
'Atoli) | х | × | × | × | × | | × | × | × | | | | | | | | | | | emorpeet Angelfish
entropyge flavissima
Päraharaha) | | × | | | × | | | | | | | | | | | | | | | uliethead parrotfish
Chlorurus sordidus
rieti para para auahi) | | × | | | × | | | × | | | | | | | | | | | | lue-Green Chromis
(Chromis viridis
'Atoti) | | × | × | | x | | × | × | × | | | | | | | | | | | Giant Monay
(Gymnothorax
(avanirus) | | | | | | | | | × | | | | | | | | | | | Spotted pufferfish
Arothron meleagris | x | | | | | | | | | | | | | | | | | | | dfin/Oval Butterflyfish
chaetodon lunulatus) | | | × | | | | | x | | | | | | | | | | | | Bonefish
Albula glossodonta
'io'io) | x | × | × | | | × | | | | | | | | | | | | | | Fringelip mullet
renimugil crenilabris | x | | × | | × | × | | | | | | | | | | | | | | flowtail Blue Damsel
hrysiptera parasema) | х | × | × | × | | × | | × | × | | | | | | | | | | | diuestreak Cleaner
Wrasse (Labroides
dimidiatus | | | × | | × | | | | | | | | | | | | | | | Po'ou)
ckstreak surgeonfish
centhurus nigricauda) | | × | | | | | | | | | | | | | | | | | | White-Banded
Triggerfish | | | × | × | | | | | | | | | | | | | | | | aculeatus)
Sober Wrasse | | | | | | × | | | | | | | | | | | | | | mmon Parrotfish
sarus psittacus) | sky Farmerfish
egastes nigricans) | | | × | | | × | | | х | | | | | | | | | | | nevcomb Grouper
Yellow-Margined
Snapper (Lutjanus | Sergeant major
budefdul sexatilis). | und be Terenui (the
goat) | | | | | | | | × | × | | | | | | | | | | | triated Surgeonfish
tenochaetus striatus) | | | | | | x | × | | | | | | | | | | | | | Corythoichthys
flavofasciatus | | | | | | | | × | | | | | | | | | | | | | × | note: we couldn't identify 2 fish | -, | - 1 | - 1 | - 1 | Species Name Species Name Grant Emperior Grant Emperior Species Name Common Species Name Common Species Name Species Name Species Name Species Name Common Species Name Species Name Species Name Species Name Species Name Common Species Name | Groups
Matthew + Kai | Eva + Melissa Kyli | e + Alex | | | | | | | | | | | |--|------------------------------------|--------------------|----------|---|--|--|--|--|--|--|--|--|--| | chrysopterus 'Atoti) Convict surgeorfish | × | x | | | | | | | | | | | | | (Acanthurus trigostegus
Manini)
Threadfin Rumorin C | × | x | | | | | | | | | | | | | (Chaetodon auriga)
Whitetailed damselfish | × | x | | | | | | | | | | | | | (*Dascytus aruanus
*Atoti) | × | × | | | | | | | | | | | | | (Centropyge flavissima
Päraharaha) | | | | | | | | | | | | | | | (Chlorurus sordidus
Palati pala pala auahi) | × | | | | | | | | | | | | | | Blue-Green Chromis
(Chromis viridis | × | | | | | | | | | | | | | | Giant Moray
(Gymnothorax | | | | | | | | | | | | | | | Spotted pufferfish
(Anothern meleanris | | | | | | | | | | | | | | | Huehue 'ere'ere)
Redfin/Ovel Butterflyfish | | | | | | | | | | | | | | | (Chaetodon lunulatus) Bonefish (Albula ninssorionta | - | | | | | | | | | | | | | | folio)
Fringelip mullet | | | | | | | | | | | | | | | (Crenimugil crenitabris
Tehu)
Vellowtoil Damsel | | ¥ | | | | | | | | | | | | | Bluestreak Cleaner
Wrasse (Labroides | | | | | | | | | | | | | | | dimidiatus
Po'ou) | | | | | | | | | | | | | | | (Acanthurus nigricauda)
White-Banded | | | | | | | | | | | | | | | Triggerfish
(Rhinecanthus
aculeatus) | | × | | | | | | | | | | | | | Sixbar Wrasse
(Thalassoma hardwicke) | | | | | | | | | | | | | | | Common Parrotfish (Sca
Dusky Farmerfish (Stega | rus psittacus)
astes nigricans) | | | | | | | | | | | | | | Yellow-Margined
Snapper (Lutjanus | и х | | | | | | | | | | | | | | Sergeant major | | | | | | | | | | | | | | | found be Terenui (the
goat) | ж | | | | | | | | | | | | | | Striated Surgeonfish
(Ctenochaetys striation) | | | | | | | | | | | | | | | Striated Surgeorifish
(Ctenochaetus striatus)
Yellowbended Pipefish
Corythoichthys
flavofascienus
ACANTHURUS
NIGROFUSCUS | × | | | | | | | | | | | | | | ACANTHURUS
NIGROFUSCUS | × | × | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | | | | | | | | | Species Name | student name
(pick a species) | Family Name | Notes on function of this group | Source | | |--|----------------------------------|----------------|---|--|--| | Clown Fish
(Amphiprion
chrysopterus
'Atoti) | sofia | Pomacentridae | - contribute to nutrient cycling - Contribute to the maintenance of an ecosystem by cycling nutrients as well as controlling the population of algae and smaller animals (invertebrates) - Algae: helps control population and overgrowth. This prevents algae from overcoming the corals - Tend to patches of coral - Pomacentridae serve as a food source for many fish in a coral reef ecosystem - Symbiotic relationship with sea anemones: provide protection by removing parasites and the anemones also serve as a shelter to protect the clown fish | https://marinesanctua
ry.org/blog/sea-
anemone-and-
clownfish-
behind-the-
scenes-of-an-
iconic-
friendship/
https://news.
cnrs.
fr/articles/the-
secret-life-of-a-
clownfish
https://www.
tetiaroasociety.
org/island/fish | | | Convict
surgeonfish
(Acanthurus
trigostegus
Manini) | kedhar | acanthuridae | Adults live on offshores reefs but larvae are carried closer to shore to develop into juveniles. They are grazers and planktivores. Herbivores on coral reefs prevent mats of algae and other photoautotrophs from smothering the corals. Often use the reef for cover and their feces provide nutrients for corals. | | | | Threadfin
Butterfly Fish
(Chaetodon
auriga) | Nohea | Chaetodontidae | Coral consumption (corallivory) is a unique adaptation as only 128 fish species eat corals, out of the 5000 or more fish species recorded from coral reefs, and 61% belong to a single-family, the butterflyfish. They are able to use their elongated snouts in order to scrape the surface of coral to obtain algae and other small prey. In addition, butterflyfish are important in reducing the amount of algae that accumulates on coral. Butterflyfish and their eggs and larvae are important food items for marine predators. | https:
//animaldiversity
-
org/accounts/Ac
anthuridae/ | | | Whitetailed
damselfish
(*Dascyllus
aruanus 'Atoti) | Bridget | Pomacentridae | They live in groups up to 30 individuals finding shelter within the coral. They will venture outside the coral to forage algae and plankton playing an important role in transferring energy to the reef. | | | | Lemonpeel
Angelfish
(Centropyge
flavissima
Pàraharaha) | Kylie | Pomacenthidae | Is protogynous hermaphrodite; Feeds on filamentous
algae; omnivore; nips at coral polyps; contributes to
nutrient cycling and keeps microalgae growth in check;
transfers energy through the trophic levels <3; semi
aggressive; are all born as females and the most
dominant turns male | | | | Bullethead
parrotfish
(Chlorurus
sordidus
Pa'ati pa'a pa'a
auahi) | Bridget | Scaridae | They eat the algae off of the corals which leads to reef erosion and sand formation. Since they scrape the green algae off of the corals it can also clean them. | | | | Blue-Green
Chromis
(Chromis viridis
'Atoti) | alex | Pomacentridae | they eat algae and plankton, and also live by the corral
so they play an important role in transferring energy
through the tropic levels, as they are preyed on by
larger fish and sharks | | | | Giant Moray
(Gymnothorax
javanicus) | Jacob | Muraenidae | Top predator, eats fish that come near the rock crevice it lives in. Due to it's large size and strong jaw it makes for a good predator. By controlling the the distribution, abundance and diversity of prey, they regulate lower species in the food chain (trophic cascades). | | | | Spotted
pufferfish
(Arothron
meleagris
Huehue 'ere'
ere) | Flynn | Tetraodontidae | Pufferfish are important prey for a number of marine predators including larger fish and sharks. Nutrients from their waste play a vital role in supporting the growth of marine plants and phytoplankton, which are the foundation of the marine food chain. | | | | Redfin/Oval
Butterflyfish
(Chaetodon
lunulatus) | | | eats coral polyps, algae and small invertebrates maintains the health of coral reefs. There is a protective layer of mucus that covers the coral to trap food with the sticky mucus properties. This is the part of the Coral that Redfin butterflyfish feed on. Their relationship to the coral is symbiotic since they prevent coral overgrowth while gaining nutrients. | | | | Bonefish
(Albula
glossodonta
'io'io) | Mistie | Albulidae | Important to food chain. They feed on many small mollusks, small crabs, fish, and shrimps — keeping population in check. As prey, they provide a food source for their predators like sharks and barracudas. | | | | Fringelip mullet
(Crenimugil
crenilabris
Tehu) | Marcella | Mugilidae | The Mugilidae family are nearshore pelagic fishes. Fringelip mullets are important for cycling nutrients by eating detritus and plankton and converting it into more accessible resources for predators. They also eat crustaceans. They feed by running their mouth through the sediment at the bottom, using their fringelip to filter for food particles. | https://www.
blueocean-eg.
com/blog/the-
fringelip-mullet | | | Yellowtail
Damsel | Melissa | Pomacentridae | According to PubMed, "Damselfishes play an important ecological role by affecting the structure of benthic and coraline communities and controlling algal diversity." So, these fish put energy and nutrients in their reef environments and show territorial behaviors towards other herbivores to protect their algal gardens. Damselfish are very important parts of a coral reef, however, their territorial behaviors harm the coral due to scaring off the algal cleaners of the reef. | https://www.
ncbi.nlm.nih.
gov/pmc/articles
/PMC7326182/ | | |---|-----------|---|---|--|--| | Bluestreak
Cleaner Wrasse
(Labroides
dimidiatus—
Po'ou) | charlotte | Labridae (Wrasses) | cleaner fish! engage in mutualistic activities with larger reef fish, setting up cleaning stations in the surface/pelagic zone and consuming algae, dead tissue buildup, + other detritus often directly off of other organisms. they are important contributors to parasite removal and control, improvement/maintenance of marine vertebrate health, and overall coral reef resilience via the numerous symbiotic relationships they maintain, they are a hermaphroditic fish, meaning that they are born male and mature into females later in life depending on their ecosystem's surroundings and species-wide social dynamic. | https:
//sustainableaq
uatics.
com/sustainable
-islands-
fish/wrasses/blu
estreak-cleaner/ | | | Blackstreak
surgeonfish
(Acanthurus
nigricauda) | Eva | Acanthuridae | The Acanthuridae family largely consists of zooplankton feeders, grazers, and browsers. The zooplankton feeders pursue and capture copepods, crustacean larvae, and pelagic eggs. They are also known to contribute to maintaining epilithic algal matrix biomass and prevent shifts from coral to algal dominance following disturbances. | | | | White-Banded
Triggerfish
(Rhinecanthus
aculeatus) | Gobind | Balistidae | Balistidae are predators that control invertebrate populations and create balance in the ecosystem. This prevents overgrazing and regulates algal growth. Some species in the Balistidae family feed on algae, by grazing on algae covered surfaces they regulate algal growth. Balistidae also nip at corals, and by creating small pits or holes in the coral substrate, triggerfish can facilitate the settlement of coral larvae. Balistidae are also territorial and defend specific areas of the reef which contributes to the spatial organization of the ecosystem. | | | | Sixbar Wrasse
(Thalassoma
hardwicke) | Jayden | Labridae | The Labridae fish family, which includes species like the Sixbar Wrasse, contributes to the control of invertebrate populations, help maintain reef health, and participate in nutrient cycling. Additionally, some wrasse species engage in cleaning behavior, removing parasites from other fish, contributing to the overall well-being of the aquatic community. | | | | Common
Parrotfish
(Scarus
psittacus) | Matthew | Scaridae | Parrotfish are colorful, tropical creatures that spend about 90% of their day eating algae off coral reefs. This almost-constant eating performs the essential task of cleaning the reefs which helps the corals stay healthy and thriving | | | | Dusky
Farmerfish
(Stegastes
nigricans) | Kai | Pomacentridae | Pomacentridae hide within coral from predators, eating algae which helps transfer energy to the reef system. Some also tend gardens of filamentous algae but can also sometimes eat small invertibrates. | https:
//animaldiversity
-
org/accounts/Po
macentridae/ | | | Honeycomb
Grouper
(Epinephelus
merra | Stephanie | Serranidae, sub-family
Epinephelinae | Carnivorous fish that are top-level predators and help to control the abundance of other fish Some species are habitat engineers that excavate rock and sediment, providing shelter for other species Egg concentrations during spawning events also provide fatty acids which support multiple trophic levels | | | | Yellow-
Margined
Snapper
(Lutjanus
fulvus) | Gobind | Lutjanidae | The family Lutjanidae, including snappers like Lutjanus fulvus, plays a crucial role in marine ecosystems by contributing to biodiversity, regulating prey populations, transferring energy within the food web, influencing coral reef health, and participating in various behavioral interactions. | | | | Sergeant major
(Abudefduf
saxatilis), found
be Terenui (the
goat) | Kai | Pomacentridae | Pomacentridae hide within coral from predators, eating algae which helps transfer energy to the reef system. Some also tend gardens of filamentous algae but can also sometimes eat small invertibrates. | | | | Striated
Surgeonfish
(Ctenochaetus
striatus) | Nohea | Acanthuridae | This family eat plants, generally algal mats on corals or plankton above the corals. Herbivores on coral reefs prevent mats of algae and other photoautotrophs from smothering the corals. Often use the reef for cover or hunt for plankton above the reef so their droppings provide nutrients for corals. | | | | Yellowbanded
Pipefish
Corythoichthys
flavofasciatus | Jayden | Syngnathidae | The Syngnathidae family, which includes seahorses and pipefish like the Yellowbanded Pipefish, contributes to the greater ecosystem by playing a role in maintaining the balance of small invertebrate populations. They are known for their unique reproductive behavior, where males often carry and give birth to their offspring. This distinctive reproductive strategy can have implications for local food webs and biodiversity, influencing the distribution and abundance of various species in their habitat. | | | |--|--------|--------------|--|--|--| |--|--------|--------------|--|--|--| | C - Cultivated Area ; P - Pristing
Species Name/Group Names | | | | | | | | | | | | | | | | | |---|------------------|-------------------|-------------------|-----------------|--------------------|-------------------|---------------------------|--------------------|--|--|--|--|--|--|--|--| | Sobannetirnia Colondulari | Steph + Sofia (1 |) Bridget + Matth | n Jacob + Melissi | Marcella + Flyn | n Alex + charlotte | (Kai + Kedhar (6) | Jayden + Mistie + Nohea (| Gobind + Kylie (8) | | | | | | | | | | Sphagneticola Calendulacea
Leucaena Leucocephala
Sida Rhombilolia | P, C
P, C | Р | P, C | P
P | P,C
P | Р | , | P,C | | | | | | | | | | Dodd
Talipartiti Tiliaceum | P
P | | | С | | | Р | | | | | | | | | | | Hibiscus Rasa-Sinesis | P, C
C | Р | | С | | P,C | c | С | | | | | | | | | | Roystonea Regia
Morinda Citrofolia | c
c | | P | | P | | | C
P | | | | | | | | | | Tridax Procumbens
Cenchrus Enchinatus | P, C
P | | | C
C | | С | | С | | | | | | | | | | Scaevola Taccada
Passiflora Foetida | P | | Р | Р | P,C | | | С | | | | | | | | | | Eleusine Indica
Rynchosia Minima | P
C | | | | | | | | | | | | | | | | | Cyanthillum Cinereum
Sorghum Halepense
Gardenia Jasminoides | c | | | | | | | | | | | | | | | | | Ricinus Communis
Carica Papaya | | P | P | Р | С | Р | Р | | | | | | | | | | | Vigna Marina
Ipomoea Oscura | | | P | | | | | | | | | | | | | | | Rounainvillea Spertabilis | | P | c | P | С | | | | | | | | | | | | | Asystasia gangetica
Dioscorea Bultifea
Panicoideae | | | | P
P | | | | | | | | | | | | | | Genus Cocos
Genus passiflora | | P,C
P,C | | P | P,C | P,C | | P | | | | | | | | | | Miconia Calvescens
Genus Malvastrum | | P
P | | Р | | | | | | | | | | | | | | Hibiscus Schizopetalus
Nephrolepis falcata | | P | | С | | | | | | | | | | | | | | Genus Coccoloba
Genus Lantana
Cordia sebestena | | P | | | | Р | | | | | | | | | | | | Morinda citrifolia
Tribe Malveae | | P | | | | | | | | | | | | | | | | Gerus cyanthilliuous
Mimosa pudica | | c | | | С | | | С | | | | | | | | | | casuarina equisetifolia
Heliotropium foertherianum
Lonicera | | Р | | | P | | | | | | | | | | | | | Paspalum conjugata | | | | | С | P,C | | | | | | | | | | | | Pandanus conjugatum
Columbrina asiatica | | | | | | C
P | | | | | | | | | | | | Cordia subcordata
Sphagneticola trilobata
Passiflora edulis | | | | | | P
P | Р | | | | | | | | | | | Oxalis corniculata | | | | | | P
D | | | | | | | | | | | | Stachytarpheta cayennesis
Neonotonia wightii
Neltuma pallida | | | | | | P
P | р, с | | | | | | | | | | | Family poaceae | | | | | | C | | | | | | | | | | | | Cassytha filiformis
dactyloctenium aegyptian
genus hibiscus | | | | | | | P
D | | | | | | | | | | | genus hibiscus
selaginella kraussiana
triumfetta rhomboidea | | | | | | | P
c | | | | | | | | | | | miscanthus floridulus
Emilia fosbergii | | | | | | | c
P | С | | | | | | | | | | Rionus communis
Stachtarpheta cayennesis | | | | | | | P
P | | | | | | | | | | | Spondia dulcis
Manihot esculenta | | | | | | | | c
c | | | | | | | | | | Euphorbia hypericifolia
Desmanthus virgatus | | | | | | | | C+P
C | | | | | | | | | | Sacciolepis indica
Terminalia catappa | | | | | | | | C
C | | | | | | | | | | Euphorbia thymifolia
Phyllanthus amarus
Euphorbia prostrata | | | | | | | | P
P | | | | | | | | | | Artocarpus altilis
Spermacoce remota | | | | | | | | P
P | | | | | | | | | | -, | Groups | | | | | | | | | | | |--|----------------|--------------------|---------------|-------------|------------------------|----------------|----------------|--|--|--|--| | Species Name | Bridget + Char | Melissa +
Nohea | Misty + Sofia | Kylie + Eva | kedhar and
marcella | Matthew + Alex | Jacob + Jayden | | | | | | Sixbar wrasse (Thalassoma Hardwickle) | х | x | | | x | x | X | | | | | | Threespot Dascyllus Farmerfish (Pomacentridae) | | x | | | | | | | | | | | Temperate Bass (moronidae) | | x | | | | | | | | | | | Lizard Fish (Synodontidae) | | x | | | | | | | | | | | Damselfish (Pomacentridae) | | x | x | | x | | X | | | | | | Moorish Idol | x | | | | | | | | | | | | Barred Jack (Carangoides ferdau) | | | X | | | | | | | | | | Dascyllus trimaculatus | | | x | | | | | | | | | | Chrysiptera leucopoma | | | x | | | | | | | | | | Yellow-blue chromis | x | | | | | | X | | | | | | Chaetodon auriga | | | x | | | | | | | | | | Lemon angel fish | х | | | | x | x | X | | | | | | Ctenochaetus striatus | | | | | x | | | | | | | | Blue streak cleaner wrasse | х | | | | | | | | | | | | Yellow and Black Butterfly Fish | х | | | | | | X | | | | | | Forceps butterflyfish (Forcipiger flavisirius) | | | | | x | | | | | | | | Blackspot Sergeant | х | | | | | x | X | | | | | | Teardrop Butterflyfish | x | | | | | | | | | | | | Checkerboard wrasse | х | | | | x | | | | | | | | Bird wrasse | х | | | | X | | | | | | | | Stripeblly wrasse (Stethojulis strigiventer) | | | | | x | | | | | | | | Pennant bannerfish | | | | | x | | X | | | | | | Black Chromis | | | | | | X | X | | | | | | sixspot grouper | | | | | | x | | | | | | | Bullet head parrotfish | х | | | | | | X | | | | | | Blue-green chromis (chromis viriais) | | | | | x | | X | | | | | | Black lip butterfly fish | | | | | x | x | | | | | | | Labroides bicolor | | | | | | | | | | | | | titan triggerfish (Balivtuides undulatus) | | | | | x | | | | | | | | Bluestreak Cleaner Wrasse | | | | | | x |
 |
 | _ | | |---|-----|-----|---|----|----|----|----|---|------|-----|------|-----|-----|-----|-----|------|----|----|-----|---|------|------|---|--| | STEPH + KAT | Coral
Complexity &
Substrate/Trans | ect Point | 5 | 10 | | 15 | 20 | 25 | 30 | 3 | 5 40 | 0 4 | 5 50 | 55 | 60 | 65 | 71 | 75 | 80 | 85 | 9 |) | | | | | | Massive
Unbranched | 0 | 0 | | 0 | 0 | 0 | 2 | | 2 : | 1 | | | | | | | | | | , | | | | | | Massive
Branched | 0 | 0 | | 0 | 2 | 0 | 3 | | | 0 | | | | | | | | | | , | | | | | | Branched Non- | Massive | 0 | 0 | | 0 | 0 | 4 | 0 | | | D . | 1 1 | 2 | 2 | | |) 2 | | | | 8 | | | | | | Sand (%) | 100 | 100 | 9 | 95 | 80 | 50 | | | | | | | 100 | 100 | 10 | 70 | 90 | 90 | 9 |) | | | | | | Rock (%) | 0 | 0 | | 5 | 0 | 20 | | | | | | | 5 | | | 5 0 | | | |) | | | | | | Rubble (%) | 0 | 0 | | 0 | 0 | 0 | | | | | | | 0 | | |) (| | | 11 |) | | | | | | KAI + FLYNN | | | | _ | Coral
Complexity &
Substrate/Trans
ect Point | 5 | 10 | | 15 | 20 | 25 | 30 | 3 | 5 40 | 0 4 | 5 50 | 55 | 60 | 66 | . 7 |) 75 | 80 | 85 | . 9 | , | | | | | | Massive
Unbranched | 0 | 0 | | 0 | 0 | 0 | 3 | | 3 | 1 | | . 3 | 3 | 3 | | | | | | | | | | | | Massive
Branched | 0 | 0 | | 0 | 0 | 0 | 2 | | | 0 | | 1 | 1 | | | | | | | | | | | | | Branched Non-
Massive | 0 | | | 0 | 0 | 0 | 1 | | | D : | | | 1 | | | | | | | , | | | | | | Sand (%) | 85 | 65 | | 70 | 90 | 90 | 60 | 9 | 70 | 0 7 | 65 | 50 | 45 | 56 | 71 | 56 | 56 | 40 | 4 | | | | | | | Rock (%) | 15 | 35 | | 25 | 0 | 5 | 10 | | | 5 1 | | | | | | | 10 | | 11 | | | | | | | Rubble (%) | 0 | 0 | | 5 | 10 | 5 | 0 | | | 0 1 | | | | | | | | | | | | | | | | Lagoon Use | Count | |------------------|-------| | Tourism | | | Cruise Ship | 2 | | Tour Boat | 10 | | Anchoring | 30 | | Fishing | 2 | | Seawalls | 1 | | Navigation Poles | 10 | | Boat Docks | 2 |