A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | `http://bit.ly/drlndlinks` | Please Insert > Row and add new links freely | PUBLIC SHARED DOCUMENT - Please respect the audience and don't rename the original (make a copy first!) | | ||||||||||||||||||||||||
2 | Deep Reinforcement Learning Nanodegree Links | |||||||||||||||||||||||||||
3 | Deep Reinforcement Learning Nanodegree Links* | Link | Comments | * NOTE: This is a community effort, NOT official Udacity content. | ||||||||||||||||||||||||
4 | Deep Reinforcement Learning Nanodegree Links* | Deep Reinforcement Learning Online Course | Udacity | ||||||||||||||||||||||||||
5 | Deep Reinforcement Learning Online Course | Udacity | |||||||||||||||||||||||||||
6 | Forums | Udacity Forums | ||||||||||||||||||||||||||
7 | Forums | https://calendar.google.com/calendar/embed?src=knowlabs.com_gu20ftpeljmm1u9evmtn8vum1k@group.calendar.google.com&ctz=America/Los_Angeles | ||||||||||||||||||||||||||
8 | Textbook: Reinforcement Learning: An Introduction - second edition - by Richard S. Sutton and Andrew G. Barto | https://s3-us-west-1.amazonaws.com/udacity-drlnd/bookdraft2018.pdf | https://github.com/ShangtongZhang/reinforcement-learning-an-introduction | https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view | ||||||||||||||||||||||||
9 | github | https://github.com/udacity/deep-reinforcement-learning | ||||||||||||||||||||||||||
10 | Special Topics: Dynamic Programming | 8 Hours of Extracurricular Content here! | ||||||||||||||||||||||||||
11 | Special Topics: Dynamic Programming | DRLND Leaderboard | <<< Add your best project scores and write ups here | |||||||||||||||||||||||||
12 | openai / gym Leaderboard | https://github.com/openai/gym/wiki/Leaderboard | ||||||||||||||||||||||||||
13 | openai / gym Leaderboard | https://waffle.io/udacity/drlnd-issues-tracker | ||||||||||||||||||||||||||
14 | ZenDesk | https://udacity.zendesk.com/hc/en-us/requests/new | ||||||||||||||||||||||||||
15 | Site Status updates | https://twitter.com/udacity | ||||||||||||||||||||||||||
16 | Deadlines (P1: Aug 28, P2: Oct 16, P3: Oct 30, Term ends: Oct 30) | https://classroom.udacity.com/nanodegrees/nd893/parts/8f607726-757e-4ef5-8b64-f2368755b89a/modules/a85374fa-6a60-425b-a480-85b211c5bd5d/lessons/cbd125cd-6d16-439c-b902-1956b49ef495/concepts/3b66d3d3-b276-4e60-bb5a-72dce4805dcc | ||||||||||||||||||||||||||
17 | https://review.udacity.com/#!/rubrics/1889/view | |||||||||||||||||||||||||||
18 | Project 2 rubric | https://review.udacity.com/#!/rubrics/1890/view | https://youtu.be/2N9EoF6pQyE | https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md#reacher | ||||||||||||||||||||||||
19 | ||||||||||||||||||||||||||||
20 | Sections below: Articles | Blogs | Books | Cartoons | Cheatsheets | Cloud | Conferences | Community | Competitions | Courses | Github | Glossary | Infographics | Jobs | Notebooks | Papers | Patents | Slides | Tools | Videos | |||||||||||||||||||||||||||
21 | Sections below: Articles | Blogs | Books | Cartoons | Cheatsheets | Cloud | Conferences | Community | Competitions | Courses | Github | Glossary | Infographics | Jobs | Notebooks | Papers | Patents | Slides | Tools | Videos | |||||||||||||||||||||||||||
22 | Articles | |||||||||||||||||||||||||||
23 | Reinforcement Learning Doesn't Work Yet. | https://www.alexirpan.com/2018/02/14/rl-hard.html | ||||||||||||||||||||||||||
24 | Why RL is flawed | https://thegradient.pub/why-rl-is-flawed/ | RL works when problem is deterministic, discrete, static, fully observable, fully-known, single-agent, episodic, cheap and easy to simulate, easy to score | |||||||||||||||||||||||||
25 | How to fix RL | https://thegradient.pub/how-to-fix-rl/ | Combine reinforcement learning and meta learning - meta-reinforcement learning | |||||||||||||||||||||||||
26 | Evolution Strategies as a Scalable Alternative to Reinforcement Learning | https://blog.acolyer.org/ | ||||||||||||||||||||||||||
27 | Evolutionary algorithm outperforms deep-learning machines at video games | https://www.technologyreview.com/s/611568/evolutionary-algorithm-outperforms-deep-learning-machines-at-video-games/ | ||||||||||||||||||||||||||
28 | Reinforcement Learning or Evolutionary Strategies? Nature has a solution: Both. | https://medium.com/beyond-intelligence/reinforcement-learning-or-evolutionary-strategies-nature-has-a-solution-both-8bc80db539b3 | ||||||||||||||||||||||||||
29 | Metacar | https://www.metacar-project.com/ | ||||||||||||||||||||||||||
30 | The Essential Guide to Training Data | https://visit.figure-eight.com/rs/416-ZBE-142/images/The%20Essential%20Guide%20to%20Training%20Data.pdf | ||||||||||||||||||||||||||
31 | Machine Learning for Humans | https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?dl=0 | ||||||||||||||||||||||||||
32 | Math for Deep Learning | http://leiluoray.com/2018/08/29/Deep-Learning-Math/ | ||||||||||||||||||||||||||
33 | Dreaming about Driving | https://wayve.ai/blog/dreaming-about-driving-imagination-rl | ||||||||||||||||||||||||||
34 | How To Learn Data Science If You’re Broke | https://towardsdatascience.com/how-to-learn-data-science-if-youre-broke-7ecc408b53c7 | ||||||||||||||||||||||||||
35 | Beyond DQN/A3C: A Survey in Advanced Reinforcement Learning | https://towardsdatascience.com/advanced-reinforcement-learning-6d769f529eb3 | Deep RL models are really hard to train, period. | |||||||||||||||||||||||||
36 | How to rapidly test dozens of deep learning models in Python | https://towardsdatascience.com/how-to-rapidly-test-dozens-of-deep-learning-models-in-python-cb839b518531 | ||||||||||||||||||||||||||
37 | How the Lottery Ticket Hypothesis is Challenging Everything we Knew About Training Neural Networks | https://towardsdatascience.com/how-the-lottery-ticket-hypothesis-is-challenging-everything-we-knew-about-training-neural-networks-e56da4b0da27 | ||||||||||||||||||||||||||
38 | ||||||||||||||||||||||||||||
39 | Blogs | |||||||||||||||||||||||||||
40 | Blogs | https://medium.com/@yuxili/resources-for-deep-reinforcement-learning-a5fdf2dc730f | Over 120 links ... | |||||||||||||||||||||||||
41 | My Curated List of AI and Machine Learning Resources from Around the Web | https://medium.com/machine-learning-in-practice/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524 | ||||||||||||||||||||||||||
42 | DeepMind | https://deepmind.com/blog/ | ||||||||||||||||||||||||||
43 | - Open sourcing TRFL: a library of reinforcement learning building blocks | https://deepmind.com/blog/trfl/ | https://github.com/deepmind/trfl/ | |||||||||||||||||||||||||
44 | OpenAI | https://blog.openai.com/ | see OpenAI tab | |||||||||||||||||||||||||
45 | - Reinforcement Learning with Prediction-Based Rewards | https://blog.openai.com/reinforcement-learning-with-prediction-based-rewards/ | ||||||||||||||||||||||||||
46 | - Spinning Up in Deep RL | https://blog.openai.com/spinning-up-in-deep-rl/ | Includes examples of RL code, educational exercises, documentation, and tutorials | |||||||||||||||||||||||||
47 | Tensorflow | https://medium.com/@tensorflow | ||||||||||||||||||||||||||
48 | The Gradient | https://thegradient.pub/ | Stanford Artificial Intelligence Laboratory (SAIL) | Deep Reinforcement Learning | ||||||||||||||||||||||||
49 | UC Berkeley AI Research | http://bair.berkeley.edu/blog/ | ||||||||||||||||||||||||||
50 | Andrej Karpathy blog (older) | http://karpathy.github.io/ | ||||||||||||||||||||||||||
51 | Deep Reinforcement Learning: Pong from Pixels | http://karpathy.github.io/2016/05/31/rl/ | ||||||||||||||||||||||||||
52 | Andrej Karpathy blog (newer) | https://medium.com/@karpathy/ | 30K followers | |||||||||||||||||||||||||
53 | Richard S. Sutton | http://incompleteideas.net/ | ||||||||||||||||||||||||||
54 | Moritz Hardt | http://blog.mrtz.org/ | ||||||||||||||||||||||||||
55 | Adrian Colyer: the morning paper | https://blog.acolyer.org/ | ||||||||||||||||||||||||||
56 | Towards Data Science | https://towardsdatascience.com/ | Now featuring one of our own: Partha Pratim Neog | |||||||||||||||||||||||||
57 | - What’s New in Deep Learning Research: Stronger Learning with Differentiable Plasticity | https://towardsdatascience.com/whats-new-in-deep-learning-research-stronger-learning-with-differentiable-plasticity-9b793a5e3da3 | ||||||||||||||||||||||||||
58 | Algorithmia | https://blog.algorithmia.com/introduction-to-reinforcement-learning/ | ||||||||||||||||||||||||||
59 | Locally Optimistic: The Blacker the Box | https://www.locallyoptimistic.com/post/the-blacker-the-box/ | ||||||||||||||||||||||||||
60 | Devan Stormont | https://voyageintech.com/ | DRLND Student | |||||||||||||||||||||||||
61 | Google AI Blog | https://ai.googleblog.com/ | ||||||||||||||||||||||||||
62 | Google Developers | https://developers.googleblog.com/ | ||||||||||||||||||||||||||
63 | - Rules of Machine Learning: Best Practices for ML Engineering | https://developers.google.com/machine-learning/guides/rules-of-ml | ||||||||||||||||||||||||||
64 | - Google Developers Launchpad introduces The Lever, sharing applied-Machine Learning best practices | https://developers.googleblog.com/2018/08/google-developers-launchpad-introduces.html | ||||||||||||||||||||||||||
65 | The Lever | https://medium.com/the-lever | ||||||||||||||||||||||||||
66 | The 5 Best Machine Learning GitHub Repositories & Reddit Threads from August 2018 | https://www.analyticsvidhya.com/blog/2018/09/best-machine-learning-github-repositories-reddit-threads-august-2018/ | ||||||||||||||||||||||||||
67 | Synced: AI Industry & Technology Review | https://syncedreview.com/ | ||||||||||||||||||||||||||
68 | Facebook accelerates AI development with new partners and production capabilities for PyTorch 1.0 | https://code.fb.com/ai-research/facebook-accelerates-ai-development-with-new-partners-and-production-capabilities-for-pytorch-1-0/ | PyTorch 1.0 | |||||||||||||||||||||||||
69 | RL — The Math behind TRPO & PPO | https://medium.com/@jonathan_hui/rl-the-math-behind-trpo-ppo-d12f6c745f33 | ||||||||||||||||||||||||||
70 | Adventures in Unity ML-Agents | http://adventuresinunitymlagents.com/ | By Mike Richardson and Patrick Nalepka of DRLND | |||||||||||||||||||||||||
71 | Rl series from Unity Staff | https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0 | ||||||||||||||||||||||||||
72 | Books | |||||||||||||||||||||||||||
73 | Deep Reinforcement Learning Hands-On | Reinforcement Learning Nanodegree program students are eligible for complimentary Amazon Web Services (AWS) Promotional Credits to explore AWS services. | ||||||||||||||||||||||||||
74 | Grokking Deep Reinforcement Learning | Please check out the lesson | https://github.com/mimoralea/gdrl | |||||||||||||||||||||||||
75 | The Definitive C++ Book Guide and List | |||||||||||||||||||||||||||
76 | Multi-Agent Machine Learning: A Reinforcement Approach | pip install muj | ||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||||
78 | Cartoons | |||||||||||||||||||||||||||
79 | Intuitive RL: Intro to Advantage-Actor-Critic (A2C) | https://hackernoon.com/intuitive-rl-intro-to-advantage-actor-critic-a2c-4ff545978752 | ||||||||||||||||||||||||||
80 | ||||||||||||||||||||||||||||
81 | Cheatsheets | |||||||||||||||||||||||||||
82 | Cheat Sheets for AI, Neural Networks, Machine Learning, Deep Learning & Big Data | https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463 | ||||||||||||||||||||||||||
83 | C++ Python Cheatsheet | https://d17h27t6h515a5.cloudfront.net/topher/2018/January/5a4d862b_c-python-cheatsheet/c-python-cheatsheet.pdf | ||||||||||||||||||||||||||
84 | Cheat Sheets for AI, Neural Networks, Machine Learning, Deep Learning & Big Data | https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||||
86 | Cloud | |||||||||||||||||||||||||||
87 | List of Deep Learning Cloud Service Providers | https://towardsdatascience.com/list-of-deep-learning-cloud-service-providers-579f2c769ed6 | 30 providers listed | |||||||||||||||||||||||||
88 | Tenzar | https://www.tenzar.com/ | ||||||||||||||||||||||||||
89 | Floydhub | https://www.floydhub.com/ | Creating a 'Run on FloydHub' Button: | https://docs.floydhub.com/guides/run_on_floydhub_button/ | ||||||||||||||||||||||||
90 | Seedbank | http://tools.google.com/seedbank/ | ||||||||||||||||||||||||||
91 | TensorFlow Hub | http://tools.google.com/seedbank/ | ||||||||||||||||||||||||||
92 | Google AutoML | https://cloud.google.com/automl/ | Train high-quality custom machine learning models with minimum effort and machine learning expertise. | |||||||||||||||||||||||||
93 | Nimblebox | https://nimblebox.ai/ | ||||||||||||||||||||||||||
94 | VectorDash | https://vectordash.com/ | ||||||||||||||||||||||||||
95 | Vast AI | https://www.vast.ai | Low cost GPU instances | |||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||||
97 | Conferences | |||||||||||||||||||||||||||
98 | NIPS 2017 - videos | https://www.facebook.com/pg/nipsfoundation/videos/?ref=page_internal | ||||||||||||||||||||||||||
99 | ICML 2018 - Stockholm - July 10 -15, 2018 | https://medium.com/@jianzhang_23841/a-comprehensive-summary-and-categorization-on-reinforcement-learning-papers-at-icml-2018-787f899b14cb | ||||||||||||||||||||||||||
100 | Artificial Intelligence Conference - San Francisco - Sep 5-7, 2018 - $1895+ | https://conferences.oreilly.com/artificial-intelligence/ai-ca/public/register | https://www.youtube.com/watch?v=0f5ytRgDM7g&list=PL055Epbe6d5ZASsS-3ZhEWZJAqeIwe-If |