Still loading...

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | Population | Activity | ||||||||||||||||||||

2 | Reference | Mathematics Professors | School Teachers | Undergrad. Students | School-children | Evaluation of Conviction | Evaluation of Validity | Compre-hension | Presentation | |||||||||||||

3 | Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking warrants. Journal of Mathematical Behavior 24, 125-134. | x | x | |||||||||||||||||||

4 | Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics 3(2), 9-24. | x | x | x | ||||||||||||||||||

5 | Geist, C., LÃ¶we, B. & Van Kerkhove, B. (2010). Peer review and knowledge by testimony in mathematics. In B. LÃ¶we and T. MÃ¼ller (Eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice (pp.155-178). London: College Publications. | x | x | |||||||||||||||||||

6 | Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education 31, 396â€“428. | x | x | x | x | |||||||||||||||||

7 | Heinze, A. (2010). Mathematiciansâ€™ individual criteria for accepting theorems as proofs: An empirical approach. In G. Hanna, H.N. Jahnke, & H. Pulte (Eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives (pp. 101-111). New York: Springer. | x | x | |||||||||||||||||||

8 | Inglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses. Research in Mathematics Education 10(2), 119-133. | x | x | |||||||||||||||||||

9 | Inglis, M., & Mejia-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science 14, 97-110. | x | x | x | ||||||||||||||||||

10 | Inglis, M., & Mejia-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction 27, 25-50. | x | x | x | ||||||||||||||||||

11 | Inglis, M., Mejia-Ramos, J.P., Weber, K., & Alcock, L. (in press). On mathematicians' different standards when evaluating elementary proofs. To appear in Topics in Cognitive Science. | x | x | |||||||||||||||||||

12 | Martin, W. G., & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education 20 (1), 41-51. | x | x | x | x | |||||||||||||||||

13 | Mejia-Ramos, J. P., & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior 30, 19-29. | x | x | x | ||||||||||||||||||

14 | Morris, A. (2002). Mathematical reasoning: Adults' ability to make the inductive-deductive distinction. Cognition and Instruction 20, 79-118. | x | x | |||||||||||||||||||

15 | Morris, A. (2007). Factors affecting pre-service teachers' evaluations of the validity of students' mathematical arguments in classroom contexts. Cognition and Instruction 25, 479-522. | x | x | |||||||||||||||||||

16 | Raman, M. (2003). Key ideas: What are they and how can they help us understand how people view proof? Educational Studies in Mathematics 52, 319â€“325. | x | x | |||||||||||||||||||

17 | Segal, J. (1999). Learning about mathematical proof: Conviction and validity. Journal of Mathematical Behavior 18(2), 191-210. | x | x | x | ||||||||||||||||||

18 | Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education 34 (1), 4-36. | x | x | |||||||||||||||||||

19 | Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education 39, 431-459. | x | x | |||||||||||||||||||

20 | Weber, K. (2010). Mathematics' majors perceptions of conviction, validity, and proof. Mathematical Thinking and Learning 12, 306-336. | x | x | x | ||||||||||||||||||

21 | Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics 25(1), 34â€“38. | x | x | x | ||||||||||||||||||

22 | Yang, K.-L. (in press). Structures of cognitive and metacognitive reading strategy use for reading comprehension of geometry proof. To appear in Educational Studies in Mathematics. | x | x | |||||||||||||||||||

23 | Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics 79(1), 3-18. | x | x | |||||||||||||||||||

24 | Weber, K., & Mejia-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics 76, 329-344. | x | x | x | x | |||||||||||||||||

25 | Wilkerson-Jerde, M. & Wilensky, U. (2011). How do mathematicians learn math?: Resources and acts for constructing and understanding mathematics. Educational Studies in Mathematics, 78(1), 21-43. | x | x | |||||||||||||||||||

26 | Yang, K.-L., & Lin, F.-L. (2008). A model of reading comprehension of geometry proof. Educational Studies in Mathematics 67, 59â€“76. | x | x | |||||||||||||||||||

27 | Lin, F.-L., & Yang, K.-L. (2007). The reading comprehension of geometric proofs: The contribution of knowledge and reasoning. International Journal of Science and Mathematics Education 5, 729-754. | x | x | |||||||||||||||||||

28 | Adams, T. L. (2007). Reading mathematics: An introduction. Reading & Writing Quarterly 23(2), 117-119. | x | x | |||||||||||||||||||

29 | Osterholm, M. (2005). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics 63, 325-346. | |||||||||||||||||||||

30 | Conradie, J., & Frith, J. (2000). Comprehension tests in mathematics. Educational Studies in Mathematics 42, 225â€“235. | x | x | |||||||||||||||||||

31 | Konior, J. (1993). Research into the construction of mathematical texts. Educational Studies in Mathematics 24, 251-256. | x | x | x | ||||||||||||||||||

32 | Lai, Y., Weber, K., & Mejia-Ramos, J. P. (in press). Mathematiciansâ€™ perspectives on features of a good pedagogical proof. To appear in Cognition and Instruction. | x | x | |||||||||||||||||||

33 | Weber, K. (in press). Mathematicians' perspectives on their pedagogical practice with respect to proof. To appear in International Journal of Mathematics Education in Science and Technology. | |||||||||||||||||||||

34 | Fuller, E., Mejia-Ramos, J.P., Weber, K., Samkoff, A., Rhoads, K., Doongaji, D, & Lew, K. (2011). Comprehending Leronâ€™s structured proofs, in S. Brown, S. Larsen, K. Marrongelle, and M. Oehrtman (Eds.), Proceedings of the 14th Conference on Research in Undergraduate Mathematics Education (Vol. 1, pp. 84-102). Portland, Oregon | x | x | x | ||||||||||||||||||

35 | Malek, A., & Movshovitz-Hadar, N. (2011). The effect of using transparent pseudo proofs in linear algebra. Research in Mathematics Education 13(1), 33â€“58. | x | x | x | ||||||||||||||||||

36 | Hemmi, K. (2010). Three styles characterising mathematicians' pedagogical perspectives on proof. Educational Studies in Mathematics 75, 271-291. | x | x | |||||||||||||||||||

37 | Roy, S., Alcock, L., & Inglis, M. (2010). Undergraduates proof comprehension: A comparative study of three forms of proof presentation. In Proceedings of the 13th Conference for Research in Undergraduate Mathematics Education. | x | x | x | ||||||||||||||||||

38 | Alcock, L. (2009). e-Proofs: Students experience of online resources to aid understanding of mathematical proofs. In Proceedings of the 12th Conference for Research in Undergraduate Mathematics Education. | x | x | |||||||||||||||||||

39 | Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor's lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior, 23, 115-133. | x | x | |||||||||||||||||||

40 | Rowland, T. (2001). Generic proofs in number theory. In S. Campbell & R. Zazkis (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 157â€“184). Westport: Ablex. | x | x | |||||||||||||||||||

41 | Leron, U. (1983). Structuring mathematical proofs. The American Mathematical Monthly, 90(3), 174â€“184. | x | x | |||||||||||||||||||

42 | ||||||||||||||||||||||

43 | ||||||||||||||||||||||

44 | ||||||||||||||||||||||

45 | ||||||||||||||||||||||

46 | ||||||||||||||||||||||

47 | ||||||||||||||||||||||

48 | ||||||||||||||||||||||

49 | ||||||||||||||||||||||

50 | ||||||||||||||||||||||

51 | ||||||||||||||||||||||

52 | ||||||||||||||||||||||

53 | ||||||||||||||||||||||

54 | ||||||||||||||||||||||

55 | ||||||||||||||||||||||

56 | ||||||||||||||||||||||

57 | ||||||||||||||||||||||

58 | ||||||||||||||||||||||

59 | ||||||||||||||||||||||

60 | ||||||||||||||||||||||

61 | ||||||||||||||||||||||

62 | ||||||||||||||||||||||

63 | ||||||||||||||||||||||

64 | ||||||||||||||||||||||

65 | ||||||||||||||||||||||

66 | ||||||||||||||||||||||

67 | ||||||||||||||||||||||

68 | ||||||||||||||||||||||

69 | ||||||||||||||||||||||

70 | ||||||||||||||||||||||

71 | ||||||||||||||||||||||

72 | ||||||||||||||||||||||

73 | ||||||||||||||||||||||

74 | ||||||||||||||||||||||

75 | ||||||||||||||||||||||

76 | ||||||||||||||||||||||

77 | ||||||||||||||||||||||

78 | ||||||||||||||||||||||

79 | ||||||||||||||||||||||

80 | ||||||||||||||||||||||

81 | ||||||||||||||||||||||

82 | ||||||||||||||||||||||

83 | ||||||||||||||||||||||

84 | ||||||||||||||||||||||

85 | ||||||||||||||||||||||

86 | ||||||||||||||||||||||

87 | ||||||||||||||||||||||

88 | ||||||||||||||||||||||

89 | ||||||||||||||||||||||

90 | ||||||||||||||||||||||

91 | ||||||||||||||||||||||

92 | ||||||||||||||||||||||

93 | ||||||||||||||||||||||

94 | ||||||||||||||||||||||

95 | ||||||||||||||||||||||

96 | ||||||||||||||||||||||

97 | ||||||||||||||||||||||

98 | ||||||||||||||||||||||

99 | ||||||||||||||||||||||

100 |

Loading...