ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
CitationParticipantsUnexpected notesTaskMain neural response to unexpected vs. expected note
2
Besson, M., & Faïta, F. (1995). An Event-Related Potential (ERP) Study of Musical Expectancy: Comparison of Musicians With Nonmusicians. Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1278–1296.musicians, nonmusiciansout-of-key, finalrecognition & congruity judgmentsLate Positive Component (LPC) (400-800 ms)
3
Brattico, E., Tervaniemi, M., Näätänen, R., & Peretz, I. (2006). Musical scale properties are automatically processed in the human auditory cortex. Brain Research, 1117(1), 162–174.nonmusiciansout-of-key, midsequencepassive listening, congruity judgmentsfrontal negativity (180-280 ms)
P600 (480-580 ms)
4
Choi, I., Bharadwaj, H. M., Bressler, S., Loui, P., Lee, K., & Shinn-Cunningham, B. G. (2014). Automatic processing of abstract musical tonality. Frontiers in Human Neuroscience,8: 988.nonmusiciansout-of-key, midsequencepassive listeningenhanced P2 (150-230 ms)
5
Corrigall, K. A., & Trainor, L. J. (2014). Enculturation to musical pitch structure in young children: Evidence from behavioral and electrophysiological methods. Developmental Science, 17(1), 142–158.4-year-old children

adults (in supplementary info)
out-of-key, finalpassive listening while watching silent moviechildren: none for melodies

adults: ERAN (135-195 ms)
6
Demorest, S. M., & Osterhout, L. (2012). ERP responses to cross-cultural melodic expectancy violations. Annals Of The New York Academy Of Sciences, 1252, 152–157.mixed college studentsout-of-key, midsequencecongruity ratingP600 (500-800 ms)
7
Fiveash, A., Thompson, W. F., Badcock, N. A., & McArthur, G. (2018). Syntactic processing in music and language: Effects of interrupting auditory streams with alternating timbres. International Journal of Psychophysiology, 129, 31–40.mixed college studentsout-of-key, midsequencecongruity judgmentsERAN (150-250 ms)
8
Granot, R., & Donchin, E. (2004). Do Re Mi Fa Sol La Ti—Constraints, Congruity, and Musical Training: An Event-Related Brain Potentials Study of Musical Expectancies. Music Perception, 19(4), 487–528.musicians, nonmusiciansout-of-key, finalcongruity judgmentsP300, larger for constraining (300-700 ms)
9
Halpern, A. R., Zioga, I., Shankleman, M., Lindsen, J., Pearce, M. T., & Bhattacharya, J. (2017). That note sounds wrong! Age-related effects in processing of musical expectation. Brain and Cognition, 113, 1–9. older & younger adultsin-key, finalcongruity ratingN1 (80-130 ms)
P2 at left (150-250 ms)
LPC (500-800 ms)
10
Halpern, A. R., Martin, J. S., & Reed, T. D. (2008). An ERP Study of Major-Minor Classification in Melodies. Music Perception: An Interdisciplinary Journal, 25(3), 181–191.musicians, nonmusiciansin-key, midsequencemajor/minor classificationLPC to minor key tones (400-700 ms)
11
Kalda, T., & Minati, L. (2012). Detecting scale violations in absence of mismatch requires music-syntactic analysis: A further look at the early right anterior negativity (ERAN). Brain Topography, 25(3), 285–292.musicians, nonmusiciansout-of-key, midsequencetimbre anomaly detectionERAN (230-290 ms)
12
Koelsch, S., & Jentschke, S. (2010). Differences in electric brain responses to melodies and chords. Journal of Cognitive Neuroscience, 22(10), 2251–2262.nonmusiciansin- and out-of-key, finaltimbre anomaly detectionnegativity 90-150 ms
13
Kuriki, S., Isahai, N., & Ohtsuka, A. (2005). Spatiotemporal characteristics of the neural activities processing consonant/dissonant tones in melody. Experimental Brain Research, 162(1), 46–55.nonmusiciansout-of-key, finalcongruity judgmentsMEG: larger N1/P2 (120-160 ms)
14
Lagrois, M.-E., Peretz, I., & Zendel, B. R. (2018). Neurophysiological and Behavioral Differences between Older and Younger Adults When Processing Violations of Tonal Structure in Music. Frontiers in Neuroscience, 12(February).older & younger nonmusiciansout-of-key, midsequenceanomaly detection & congruity judgmentsERAN (64-185 ms)
frontal/central negativity 555-613 ms

congruity task: P600 (472-635 ms)
15
Marmel, F., Perrin, F., & Tillmann, B. (2011). Tonal expectations influence early pitch processing. Journal of Cognitive Neuroscience, 23(10), 3095–3104. https://doi.org/10.1162/jocn.2011.21632musiciansin-key, midsequenceout-of-tune note detectionless related more negative (0-100 ms)
less related more negative (280-380 ms)
16
Miranda, R. A., & Ullman, M. T. (2007). Double dissociation between rules and memory in music: an event-related potential study. NeuroImage, 38(2), 331–345.musicians, nonmusiciansout-of-key, midsequencetimbre anomaly detectionERAN (150-270 ms)
anterior negativity ("N5") (500-700 ms)
P600 (500-700 ms)
17
Omigie, D., Pearce, M. T., Williamson, V. J., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51(9), 1749–1762. doi:10.1016/j.neuropsychologia.2013.05.010nonmusicians (controls)in-key, midsequencetimbre anomaly detectionN1/ERAN (96-116 ms)
18
Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage, 50(1), 302–313.nonmusiciansin-key, midsequencepassive listeningnegativity 90-160 ms
right frontal positivity 280-600 ms
centroparietal negativity 450-550 ms
19
Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: in tune, out of key, and unaware. Brain, 132(5), 1277-1286.nonmusicians (controls)out-of-key, midsequenceanomaly detectionERAN (180-300 ms)
P600 (600-780 ms)
20
Sun, Y., Lu, X., Ho, H. T., Johnson, B. W., Sammler, D., & Thompson, W. F. (2018). Syntactic processing in music and language: Parallel abnormalities observed in congenital amusia. NeuroImage: Clinical, 19(December 2017), 640–651.nonmusicians (controls)out-of-key, finaltimbre anomaly detectionERAN (130-250 ms)
N5 (500-650 ms)
21
Vuvan, D., Zendel, B. R., & Peretz, I. (2018). Random Feedback Makes Listeners Tone-Deaf. Scientific Reports, 8(1), 7283.nonmusiciansout-of-key, midsequencecongruity judgmentsERAN (100-250 ms)
P300 (350-525 ms)
P600 (525-700 ms)
22
Zendel, B. R., Lagrois, M.-E., Robitaille, N., & Peretz, I. (2015). Attending to pitch information inhibits processing of pitch Information: The curious case of amusia. Journal of Neuroscience, 35(9), 3815–3824.nonmusicians (controls)out-of-key, midsequenceclick detection, pitch anomaly detectionclick detection: ERAN (139-283 ms), later negativities

pitch detection: P600 (439-637 ms)
23
24
Note: some of these studies included out-of-tune as well as out-of-key targets. Only target pitches that were either in-key or out-of-key are included in this table.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100