Homepage Source Code Storage Engine Language
tas Scale
BigGraphite Pyton
Citusos c
Golang
graphouse sava
Golang
[Ty tos ru comiapachelcn HBase sva
e
+ Cassan Scal
olc sava
InfloxoB. Golang
iros e
maa Golang
metrctankc Golang
Ot ” c
NewTs e
n fal Golang
OpenTsDB sava
Prometheus. Golang
Quesio e
Riak TS Edang
Roshi Golang
RRDTool RRO c
Seylla
sirioe sisto oot iosgthub comianscepia Cusiom c
. Golang
TimescaleDs c
Warp10 Hease Java
Whisper (Carbon) Pyon
Whisper (Go-carbor) Golang
CrateDB. [rep— o otrut comerselerts Lucena (62 Java
Victoriametics golang.
Questos o
Linos ntos ingo i tos otrub comindbleds cusiom? golang
arcticDB pache Parcust golang
Toengine c
oyros o s
siidy hpirde hitos lgitb con/SHDRIsiridt-server
warpto, hipsvarpl0io [10,

Bytesipoint (adve Bytes/point (wors DimentionsTags Clustering

Comment

ments 3
n-memory. mult-smensional

® 261 Nofs) Yos
© n Yes Yos 8]
200 65(10) Parta (1] Yes Bytesipoint - depends on nature of the ata, Syntetc - sh, realword - 6:h.
54012l 85013 No
Long-erm storage for prometheus.
24 s Yes
B Roquires Spark
azsite aum Yos Requiros MySOL o PostgreSQL for tags
Yes
2018 3019] ves
1010] 12121) Yes Have graphite-compatie nput
14021 1423 Yes Yos
13024) 3t Yes 27
No? No a5 an colector
Yes? Gassandra-base Have Graphit-compatble input
ves
12(26] 39029) ves
13050] 3381 Yes
Yes?
Yes tbranch,
B Time-series Event Sorage
o Predecessor of Whisper
B dotat 508
2 Docs ooks vry ice, very young, suspicious istoricalreasons.
Long-arm storagefo promethaus. Uses Google Compute Siorage.
ves? Notyet (n TODO)
92 9033 Yos7 HBaso-based Gao time serios data (whatover hat moans)
12034 12(38] Yes (36 Yes (7]
r2038] 12(39) Parial[40) Yes'{41) Remplementatonofcarbon in Go.
ve
< 16 ves. Yoot 84]
?
Yes Yo Eary development siages
Ves Yes
ves Yos

Abandoned snce 2019

https://github.com/Netflix/atlas/wiki/Overview
https://github.com/Netflix/atlas/wiki/Overview
https://github.com/Netflix/atlas/wiki/Overview#query-layer
https://github.com/criteo/biggraphite
https://github.com/criteo/biggraphite
https://github.com/citusdata/citus
https://github.com/citusdata/citus
https://github.com/lomik/graphite-clickhouse
https://github.com/lomik/graphite-clickhouse
https://clickhouse.yandex/
https://github.com/ClickHouse/graphouse
https://github.com/ClickHouse/graphouse
https://www.google.com/url?q=https://github.com/cortexproject/cortex&sa=D&source=editors&ust=1701879255430480&usg=AOvVaw1XFKMAjOmCBpbDLQXw5ZNN
https://github.com/weaveworks/cortex
http://druid.io
https://github.com/apache/druid
https://www.elastic.co/
https://github.com/elastic/elasticsearch
https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store
https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store
https://github.com/filodb/FiloDB
https://github.com/filodb/FiloDB
https://gnocchi.xyz/
https://github.com/gnocchixyz/gnocchi
https://julien.danjou.info/talks/storing-metrics-at-scale-with-gnocchi.pdf
https://julien.danjou.info/talks/storing-metrics-at-scale-with-gnocchi.pdf
https://spotify.github.io/heroic/#!/index
https://github.com/spotify/heroic
https://influxdata.com/
https://github.com/influxdata/influxdb
https://kairosdb.github.io/
https://github.com/kairosdb/kairosdb
https://github.com/m3db/m3db
https://github.com/m3db/m3db
https://github.com/raintank/metrictank
https://github.com/raintank/metrictank
https://github.com/firehol/netdata/
https://github.com/firehol/netdata/
https://opennms.github.io/newts/
https://github.com/OpenNMS/newts/
http://open-falcon.org
https://github.com/open-falcon/falcon-plus
http://opentsdb.net/
https://github.com/OpenTSDB/opentsdb
https://prometheus.io/
https://github.com/prometheus/prometheus/
https://www.questdb.org/
https://github.com/bluestreak01/questdb
http://basho.com/posts/business/riak-ts-1-3-is-now-open-source-what-is-here-and-what-is-coming/
https://github.com/basho/riak/tree/riak_ts-develop-1.5.2
https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/pub/?M=D
http://www.scylladb.com/technology/architecture/
https://github.com/scylladb/scylla
http://siridb.net/
https://github.com/transceptor-technology/siridb-server
https://www.google.com/url?q=https://github.com/thanos-io/thanos&sa=D&source=editors&ust=1701880022571641&usg=AOvVaw1mfhUr1AGzzPZ7S9cSTg7l
https://github.com/improbable-eng/thanos/
http://www.timescale.com/
https://github.com/timescale/timescaledb
http://www.warp10.io/
https://github.com/cityzendata/warp10-platform
http://graphiteapp.org/
https://github.com/graphite-project/carbon
https://github.com/lomik/go-carbon
https://github.com/lomik/go-carbon
https://crate.io
https://github.com/crate/crate
https://victoriametrics.com/
https://github.com/VictoriaMetrics/VictoriaMetrics
https://questdb.io/
https://github.com/questdb/questdb
https://lindb.io/
https://github.com/lindb/lindb
https://www.polarsignals.com/
https://github.com/polarsignals/arcticdb
https://www.polarsignals.com/blog/posts/2022/05/04/introducing-arcticdb/
https://tdengine.com/
https://github.com/taosdata/TDengine
https://github.com/peermaps/eyros
https://github.com/peermaps/eyros
http://siridb.net/
https://github.com/SiriDB/siridb-server
https://warp10.io/
https://github.com/senx/warp10-platform

Info [45] Name Homepage Source Code Storage Engine Language Bytes/point (ad Bytes/point (wo Dimentions/Tag Clustering Comments NOTE: YOU CAN COMMENT (ADD SUGGESTIONS) THIS SHEET. For more information about the data - see the bottom of the sheet

Akumuli hito://akumuli or¢ hitps:/github con Custom Cre 0.1148] 85H9] Yes No No commits for a half year. Might be dead
Argus ‘hitos:/githubcor hitps:/github con Custom Java Yes No? DEAD (Archived on github)
beringei https:iigithub cor hitps://github cor Custom Cre ? No DEAD. Reference implementation of Gorilla whitepaper. In-memory
Blueflood http://bluefiood.ic hitps:/qithub.con Cassandra Java 8(50] 851 Yes Yes? DEAD.
BTIDB hitps://blog.acoly https:/qithub.con Custom Golang No? Yes? Likely dead. Several years without commits. Comercial version's website doesn't work properly. Academical DB. Papers sounds very nice. Developed for IoT applications
https:/lgithub cor https:/qithub.con Custom Golang DEAD. SHOULD BE USED ONLY FOR HISTORICAL REASONS.
htto:/fgraphiteap hitps:/github con Ceres Python 8(52) 853 Yes Yes® [54] Abandonware
hito:/ichronix.io hitps:/github con Lucene Java (s8] 3(56] Yes Yes DEAD
hitps://square git hitps:/github con MongoDB NodeJs ? DEAD FOR OVER 4 YEARS. SHOULD BE USED ONLY FOR HISTORICAL REASONS
hito:ffeyanite o/ hitps:/igithub con Cassandra Clojure No Cassandra-base(DEAD
hitps:/Galmatine hitps:/gitiab com Riak Erlang Yes [57] Yes, CrossDC - C DEAD. Docs are very bad. No recomendations on clustering, just mentions that it supports it. One man's project. Sounds very good on paper
EventaL. hitps:lleventalios hitps:/github con Custom Cre 7 Yes DEAD. BETA QUALITY. General Purpose Column-based analytics db, event-based, needs investigation f it suitable for
hawkular hito/Jwww hawka hitpsgithub.con Cassandra Java 12 12 Yes Cassandra-base: DEAD.
Kenshin hitps:/lgithub cor https:/qithub.con Custom Python No No DEAD. Design goals - make whisper less 110 hungry
http:
Iisidewinder.
Sidewinder srotyacom/ httpsi/fithub.con Custom Java 3158] 45(59) Yes ‘Custom DB with own storage, protocol and API. Accepts InfluxDB proto also, there're Collectd and Grafana integrations.
Tares hitos:/lgithub cor hitps:/github con PostgreSQL Golang 8,11(60] 811(61] 7 Yes [62) DEAD
Timely hitos:/inationalse hitps:/github con Apache Accumul Java 2 Yes? No Updates for half a year. Seems to be dead. Created by NSA
TrailDB hito:/Mraildb iof hitps:/github con Custom c ? 77 General Purpose Event-based database, needs investigation f can be suitable for time-series data
TritanDB hito:ffww tritanc hitps:/github con Custom Kotiin Claims to be optimized for IoT Workloads
Vaultaire hitos:lgithub cor hitps:/github con Custom Haskel Ceph-based DEAD FOR OVER 3 YEARS. SHOULD BE USED ONLY FOR HISTORICAL REASONS. Relies on CEPH for data storage
vector hitos:lgithubcor hitps:/github con Custom NodeJs ? No DEAD. Per-host monitoring/collection framework. Suitable for a single-host out of the box, needs to be combined with something else to be useful on scale

Vulcan hitps:/lgithub, cor https:/qithub.con Cassandra Golang Yes Yes? Officialy Dead. Prometheus-compatible long term storage

http://akumuli.org/
https://github.com/akumuli/Akumuli
https://www.google.com/url?q=https://github.com/salesforce/argus/wiki&sa=D&ust=1501840512027000&usg=AFQjCNFOkvklD5xQbltiiNGvEAiB34A0-A
https://www.google.com/url?q=https://github.com/salesforce/Argus&sa=D&ust=1501840487445000&usg=AFQjCNEj8pmH9GhbbZrqJqEJD_VF6j0l8g
https://github.com/facebookincubator/beringei
https://github.com/facebookincubator/beringei
http://blueflood.io/
https://github.com/rackerlabs/blueflood
https://blog.acolyer.org/2016/05/04/btrdb-optimizing-storage-system-design-for-timeseries-processing/
https://github.com/SoftwareDefinedBuildings/btrdb
https://github.com/Cistern/catena
https://github.com/Cistern/catena
http://graphiteapp.org/
https://github.com/graphite-project/ceres/
http://chronix.io
https://github.com/ChronixDB/chronix.server
https://square.github.io/cube/
https://github.com/square/cube
http://cyanite.io/
https://github.com/pyr/cyanite
https://dalmatiner.io
https://gitlab.com/Project-FiFo/DalmatinerDB/dalmatinerdb
https://eventql.io/
https://github.com/eventql/eventql
http://www.hawkular.org/
https://github.com/hawkular/hawkular-metrics
https://github.com/douban/Kenshin
https://github.com/douban/Kenshin
https://www.google.com/url?q=http://sidewinder.srotya.com/&sa=D&ust=1509966050413000&usg=AFQjCNHMXvOM8b17vFcfW-_bWG_GqabFjg
https://www.google.com/url?q=http://sidewinder.srotya.com/&sa=D&ust=1509966050413000&usg=AFQjCNHMXvOM8b17vFcfW-_bWG_GqabFjg
https://www.google.com/url?q=http://sidewinder.srotya.com/&sa=D&ust=1509966050413000&usg=AFQjCNHMXvOM8b17vFcfW-_bWG_GqabFjg
https://www.google.com/url?q=https://github.com/srotya/sidewinder&sa=D&ust=1509966060820000&usg=AFQjCNFEMP6xwdVDnSFt1xr0O3hqnC9eVA
http://sidewinder.srotya.com/docs/#/designs/compression
http://sidewinder.srotya.com/docs/#/designs/compression
https://github.com/tgres/tgres
https://github.com/tgres/tgres
https://nationalsecurityagency.github.io/timely/
https://github.com/NationalSecurityAgency/timely
http://traildb.io/
https://github.com/traildb/traildb
http://www.tritandb.com/
https://github.com/eugenesiow/tritandb-kt
https://github.com/afcowie/vaultaire
https://github.com/afcowie/vaultaire
https://github.com/Netflix/vector
https://github.com/Netflix/vector
https://github.com/digitalocean/vulcan
https://github.com/digitalocean/vulcan

Output [63] Diamond [64; Telegraf [65 Collectd [66] Snap [67 Netdata [68]

amon \

ampq \Y

cassandra \

cloudwatch \ \

datadog \ \

elasticsearch \ \

etcd \

graphite \ \% \% \ \

grafana V [69]

graylog \2

hana \

hawkular \

heapster \

heka \

hostedgraphite V

http v Y,

influxdb \ \ \ \

kafka Vv \% \ \%

kinesis \

kairosdb \ \

librato \2

mongodb \%

maqtt \ \%

mysql \ \

nats \

nsq \

opentsdb \% \ \

prometheus \ \% \

rabbitmq \ \

riemann \ \ \ \

redis \%

rrdtool \

sentry \

sensu \

statsd 2

Name Source Code Language License Supported Outputs Extra

Diamond https://github.com/python-diamon: Python MIT Graphite, InfluxDB, matt, m' Outputs and collectors are python scripts
Telegraf https://github.com/influxdata/teleg Go MIT amon, ampq, cloudwatch, d Plugins are compile-time
Collectd https://github.com/collectd/collectc C MIT graphite, http, kafka, mongc Plugins are .so files
Snap https://github.com/intelsdi-x/snap Go Apache 2.0 influxdb, graphite, opentsdt All plugins (collectors, outputs) are separate pieces of software that talks over gRPC

Netdata https://github.com/firehol/netdata C GPLv3 graphite, kairosdb, influxdb, Can work as a standalone monitoring+alerting+dashboard system. Have Alerting capatibilities.

https://github.com/python-diamond/Diamond
https://github.com/influxdata/telegraf
https://github.com/collectd/collectd
https://github.com/intelsdi-x/snap
https://github.com/firehol/netdata
https://github.com/python-diamond/Diamond
https://github.com/influxdata/telegraf
https://github.com/collectd/collectd
https://github.com/intelsdi-x/snap
https://github.com/firehol/netdata

Aerospike
Tarantool
Cassandra
LevelDB
RocksDB
Clickhouse
ScyllaDB

Website Source Code
hitps://www.aero https://github.cor Custom
htps://tarantool.c https://github.cor Custom

https://github.cor https://github.cor Custom

Language of Reference Implementation
c 64 64 No
c NA™ 1] NA™[72] NA™

Yes, CrossDC - (General Purpose NoSQL database, can be used for time-series, but seems to not be a good fit. Bytes/point is an estimation from not very reliable source. Needs reevaluating

Yes

More application framework with a database, can be used for Time-Series, but requires A LOT of work for that

https://www.aerospike.com/
https://github.com/aerospike/aerospike-server
https://tarantool.org/
https://github.com/tarantool/tarantool
https://github.com/tarantool/tarantool/wiki/Cluster-Configuration
https://github.com/google/leveldb
https://github.com/google/leveldb

This list will contain just names of databases | think would be iteresting to test:
Requirements:

Tags (Metrics 2.0 or InfluxDB Line Protocol) TimescaleDB
Reliability clickhouse
Retentions m3db

eventql

siridb

Roshi

DalmatinerDB
Sidewinder

[1] Self-link: https://goo.gl/BRqzdG

This sheet is an attempt to structure basic information about time-series databases (or stuff that can be
used as them to some extent).

At this moment I'm against providing performance evaluation of those databases, because it's very hard to
create a fair environment, and if it's not fair - test will be useless.

Useful link with some thoughts on TSDBs: https://misfra.me/2016/04/09/tsdb-list/ (updated once in a while)

I'll only add an OpenSource database (at least basic functionality must be opensource under any OSI
approved license)

[2] average for large metrics. If database have compression - better to provide either values (range
preferrably) and links to the experiments (if any), otherwise - should be a value from whitepaper/docs and if
there are any notes - they should be added on a "Comments" field.

[3] For tags support I'll place Yes if and only if there is a history of changes there, e.x. query by dimentions
will return the real state of things, not the current one.

[4] https://docs.google.com/presentation/d/17opE2U2ale1TFYJgr0Z8Dd2fJhy2x0YbReCVeCz6uhA/edit?
usp=sharing

FOSDEM 2018 talk

[5] Tags are not supported at the moment, as per https://github.
com/criteo/biggraphite/blob/master/biggraphite/plugins/tags.py

[6] It relies on PostgreSQL to store data, without any custom compression, etc
[7] It relies on PostgreSQL to store data, without any custom compression, etc

[8] Custom (not Postgres-Based)
Highly depends on data model (thx. to dzhdanov)

[9] Depends on Clickhouse version and config.

If zero-timestamp is used and double delta compression on Clickhouse side - could be lower than 2.

2 is however average for optimal settings according to the Author (lomik).

According to my own tests with clickhouse and default compression, with "zero-timestamp" turned off it
g.a4v?.based on autogenerated data

6.5- based on real-world data set

Depends on a dataset even with generic compression algorithm it can go down to about 2.5 b/point (for
system metrics for example)

[10] According to my own tests
5.4 - based on autogenerated data
6.5- based on real-world data set

[11] https://github.com/lomik/graphite-carbon only supports current state of dimentions.

Though it's possible to implement history of changes

[12] May be a bit better than graphite-clickhouse, but likely not significant as both stores same data in a
mostly same way

[13] May be a bit better than graphite-clickhouse, but likely not significant

[14] Accroding to https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store - post optimize 508M
for 23M points, 508/23 ~= 22

Valid for 2.0, might be better in 5.x

[15] Accroding to https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store - post optimize
2200M for 23M points = 2200/23 ~ 96

Valid for 2.0, might be better in 5.x

[16] https://julien.danjou.info/talks/storing-metrics-at-scale-with-gnocchi.pdf
6.25 - avg

[17] https://julien.danjou.info/talks/storing-metrics-at-scale-with-gnocchi.pdf
6.25 - avg

[18] 2 bytes/point according to official response: https://community.influxdata.com/t/how-much-disk-does-
influxdb-consume/31
Depends on the data set it can go below 1 byte/point

[19] Acroding to official documentation, depends on randomness of data

[20] https://groups.google.com/forum/#!topic/kairosdb-group/B77fsHCyFtk - according to some random
tests.

On a good data it can be 4 bytes per point, on worse data can be worse

[21] https://groups.google.com/forum/#!topic/kairosdb-group/B77fsHCyFtk - according to some random
tests.

On a good data it can be 4 bytes per point, on worse data can be worse

[22] according to one of the authors.

[23] according to one of the authors.

[24] According to one of the authors

[25] According to one of the authors

[26] Can store them but current version don't have Documented API to query them
[27] Cassandra as storage is ok

Metrictank's own clustering is very basic and relies on kafka partitions (or graphite relays), HA is also
possible, but master promotions are manualv

[28] http://opentsdb.net/faqg.html
12 bytes with compression, without HDFS replication.

39 - minimal amount without compression, + 6b/tag

[29] http://opentsdb.net/fag.html
12 bytes with compression, without HDFS replication.
39 - minimal amount without compression, + 6b/tag

[30] Depends on compression algorithm and data
https://prometheus.io/docs/operating/storage/

[31] Depends on compression algorithm and data
https://prometheus.io/docs/operating/storage/

[32] Uncertain, not from docs

[33] Uncertain, not from docs

[34] Excluding metadata overhead

[35] Excluding metadata overhead

[36] TagDB in current master (what will become 1.1.0).

[37] there are several projects that provides clustering for that kind of metrics - github.com/go-graphite/ for
whisper-based, graphtie-web can also do some sort clustering

[38] Excluding metadata overhead

[39] Excluding metadata overhead

[40] Only current state with https://github.com/kanatohodets/carbonsearch

Requires separate daemon, query language is rudimental

[41] there are several projects that provides clustering for that kind of metrics - github.com/go-graphite/ for
whisper-based, graphtie-web can also do some sort clustering

[42] ElasticSearch to be precise

[43] Main article about Compression: https://www.google.com/url?q=https://medium.

com/@yvalyala/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-
317bc1f95932&sa=D&ust=1559117797555000&usg=AFQjCNELWLSFF1ETBmLTqEOeDLOsWFiKwg

According to:
https://medium.com/@yvalyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-
13e6ee64dd6b

and

https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-
92550d78d8ae

[44] Cluster version is separate from single node one: https://github.
com/VictoriaMetrics/VictoriaMetrics/blob/cluster/README.md

[45] Self-link: https://goo.gl/BRqzdG

This sheet is an attempt to structure basic information about time-series databases (or stuff that can be
used as them to some extent).

At this moment I'm against providing performance evaluation of those databases, because it's very hard to
create a fair environment, and if it's not fair - test will be useless.

Useful link with some thoughts on TSDBs: https://misfra.me/2016/04/09/tsdb-list/ (updated once in a while)

I'll only add an OpenSource database (at least basic functionality must be opensource under any OSI
approved license)

[46] average for large metrics. If database have compression - better to provide either values (range
preferrably) and links to the experiments (if any), otherwise - should be a value from whitepaper/docs and if
there are any notes - they should be added on a "Comments" field.

[47] For tags support I'll place Yes if and only if there is a history of changes there, e.x. query by dimentions
will return the real state of things, not the current one.

[48] Depends on dataset, can be worse than 4 bytes on dataset with random floats

[49] Depends on dataset, can be worse than 4 bytes on dataset with random floats

[50] https://github.com/rackerlabs/blueflood/wiki/FAQ

[51] https://github.com/rackerlabs/blueflood/wiki/FAQ

[52] Excluding constant metadata overhead
[53] Excluding constant metadata overhead

[54] there are several projects that provides clustering for that kind of metrics - github.com/go-graphite/ for
whisper-based, graphtie-web can also do some sort clustering

[55] It's UNCLEAR what's the characteristics, because they doesn't specify that in bytes/point. On https:

/lwww.usenix.org/system/files/conference/fast17/fast17-lautenschlager.pdf they claim to be 20% better than
InfluxDB at that point, that was 4 b/point

[56] It's UNCLEAR what's the characteristics, because they doesn't specify that in bytes/point. On https:
Ilwww.usenix.org/system/files/conference/fast17/fast17-lautenschlager.pdf they claim to be 20% better than
InfluxDB at that point, that was 4 b/point

[57] Requires external PostgreSQL for tags.

[58] http://sidewinder.srotya.com/docs/#/designs/compression

[59] http://sidewinder.srotya.com/docs/#/designs/compression

[60] Random source:
https://news.ycombinator.com/item?id=13247598

[61] Random source:
https://news.ycombinator.com/item?id=13247598
[62] Custom, not postgres based

[63] This table is based on what software says about it's Outputs. There was no sanity checks on that done
by author - e.x. no checks were made to verify if there is any use case for having data in Hana for example

[64] Language: Python
License: MIT

Outputs and collectors are python scripts

[65] Language: Go
License: MIT

Plugins are compile-time
[66] Language: C
License: MIT

Plugins are .so librarires

[67] Language: Go
License: Apache 2.0

All plugins (collector and outputs) are separate pieces that talks over gRPC

[68] Language: C
License: GPLv3

Can work as a standalone system
Have Alerting capatibilities.

[69] Direct output to Grafana (https://github.com/raintank/snap-app) - it doesn't store data for very long, but
allows you to use Grafana to get current state of metrics

See https://grafana.com/blog/2016/03/31/using-grafana-with-intels-snap-for-ad-hoc-metric-exploration/ for
more details

[70] Aerospike haves community edition money-free (sends telemetry) and two kinds of commercial. All
three supports HA for needed nodes number and replication factor. HA is the main feature. Therefore they
opened HA + Clustering for all editions.

[71] As it's a framework - it's not strictly defined by the database.

[72] As it's a framework - it's not strictly defined by the database.

