ABCDEFGHIJKLMNOPQRSTUVWXYZAAABACAD
1
2
PROJECT :
PAGE :
3
CLIENT :
DESIGN BY :
4
JOB NO. :
DATE :
REVIEW BY :
5
Voided Two-Way Slab Design Based on ACI 318-14
6
7
DESIGN CRITERIA
8
1.
The voided sphere or ellipse bubbles within slab can reduce concrete weight, so both seismic mass (ASCE 7 12.7.2) and gravity
9
loads reduced. And the long-term deflection (3 DL + LL) limits may not govern the two-way slab design (ACI 318 8.3).
10
2.
The entire slab bottom formwork can be flat, without girder, beam, drop panel or cap, but the punching area (ACI 318 8.4 & 8.5),
11
or lateral frame diaphragm area (ACI 318 12.5.3), may need to be solid as normal concrete shear transfer.
12
3.
The section forces of voided slab can be determined by a two-way finite element method or by ACI 318 8, but PT slab
13
can only be designed by one way method because the secondary moment of PT slab is one way concept. Also, the voided
14
two-way slab is better for depressed floor,
15
or irregular opening, than PT slab.
16
4.
The bottom two direction rebar can be
17
distributed as a regular solid two-way slab,
18
without Waffle slab or hollow core plank limits.
19
20
21
INPUT DATA & DESIGN SUMMARY
22
CONCRETE STRENGTH
23
fc' =5
ksi, (34 MPa)
24
REBAR YIELD STRESS
25
fy =60
ksi, (414 MPa)
26
27
TOTAL SLAB THICKNESS
28
t =40
in, (1016 mm)
29
TOP & BOTTOM SOLID THICKNESS
30
tsolid =5
in, (127 mm)
31
VOIDED BUBBLE HORIZONTAL DIAMETER
32
D =48
in, (1219 mm)
33
34
COLUMN SPACING EACH WAY
35
L =69
ft, (21.03 m)
36
B =69
ft, (21.03 m)
37
COLUMN SIZE (SHORT EDGE)
38
c =50
in, (1270 mm)
39
40
SUPERIMPOSED DEAD LOAD, ASD
41
DLsup =20
psf, (1.0 kPa)
42
LIVE LOAD
43
LL =60
psf, (2.9 kPa)
44
45
46
47
TOP BARS AT COLUMNS EACH WAY
48
41#10@5
in. o.c. (127 mm o.c.)
49
x23,0ft. long,with1in. cover
50
(7.0 m)(25 mm)
51
(All top bars to column strip suggested, if column strip & middle strip used.)
52
53
BOTTOM LAYER BOTTOM BARS
54
#9@12
in. o.c. (305 mm o.c.)
THE DESIGN IS ADEQUATE.
55
BOTTOM LAYER TOP BARS
56
#9@12
in. o.c. (305 mm o.c.)
57
with1
in. (25 mm), bottom concrete cover
58
(75% total bottom bars to middle strip & 25% to column strip suggested, if column strip & middle strip used.)
59
60
ANALYSIS
61
DETERMINE SECTION PROPERTY & DEAD LOAD
62
tsolid =5in>0,75+2,54+1=4,29in, top solid min thk
63
>0,75+2,26+1=4,01in, bot solid min thk
64
(inside cover)
(2 rebar thick)
(top & bot cover)
[Satisfactory]
65
66
D =48in>30
in, height of voided sphere or ellipse bubble
[Satisfactory]
67
68
wc =150
pcf, (ACI 318-14 19.2.2.1)
V =36191
in3, volume of a voided sphere or ellipse bubble
69
Wt =323
psf, self weight reduced 35%
DL =
DLsup + Wt =
343psf
70
71
Isoild =269333in4 Ig =205716in4
72
Ec = wc1.5 33 f'c0.5 =
4287
ksi, (ACI 318-14 19.2.2.1)
( Ig / Isoild ) Ec =
3274
ksi, for Finite Element Method
73
74
te =
( Ie / Ig )1/3 t = (0.25 Ig / Ig )1/3 t = (0.25)1/3 t =
0,63t =25,2in, for Slab only (ACI 318-14 8.3.2, 24.2 & 6)
75
76
(cont'd)
77
DETERMINE SECTION FORCE AND SLAB DEFLECTION USING FINITE ELEMENT METHOD
78
JointDuRu
79
NumberinkipsBendingMu
80
10603,61Sectionft-k/ft
81
21,051 - 2463,5
82
31,692 - 3-21,2
83
41,051 - 6463,5
84
50603,616 - 11-21,2
85
61,053 - 8-9,9
86
71,508 - 13-118,1
87
81,9111 - 12-9,9
88
91,5012 - 13-118,1
89
101,05
90
111,69
91
121,91
92
132,14
93
141,91
DETERMINE FACTORED LOAD (ACI 318-14 5.3)
94
151,69wu =
1.2 DL + 1.6 LL =
0,507ksf
95
161,05
96
171,50
DETERMINE FLEXURE CAPACITY (ACI 318-14 7.6.1.1, 8.6.1.1, & 22)
97
181,91
98
191,50Top Bar
Bot. Layer Bot.
Bot. Layer Top
99
201,05
41 # 10 @ 5" o.c.
9 @ 12" o.c.
9 @ 12" o.c.
100
210603,61d (in)37,1038,4437,31