A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | title_after | url | ratings_before | avg_rating_before | ratings_after | avg_rating_after | ||||||||||||||||||||
2 | How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks | https://openreview.net/forum?id=UH-cmocLJC | [8, 9, 9, 7] | 8.25 | [8, 9, 9, 9] | 8.75 | ||||||||||||||||||||
3 | Complex Query Answering with Neural Link Predictors | https://openreview.net/forum?id=Mos9F9kDwkz | [6,8,9,9] | 8 | [6,8,9,9] | 8 | ||||||||||||||||||||
4 | Expressive Power of Invariant and Equivariant Graph Neural Networks | https://openreview.net/forum?id=lxHgXYN4bwl | [9, 7, 5, 8] | 7.25 | [6, 8, 8, 9] | 7.75 | ||||||||||||||||||||
5 | Learning Mesh-Based Simulation with Graph Networks | https://openreview.net/forum?id=roNqYL0_XP | [10, 6, 6, 9] | 7.75 | [6, 6, 9, 10] | 7.75 | ||||||||||||||||||||
6 | Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs | https://openreview.net/forum?id=Jnspzp-oIZE | [7, 5, 6, 9] | 6.75 | [7, 7, 7, 9] | 7.5 | ||||||||||||||||||||
7 | Graph Convolution with Low-rank Learnable Local Filters | https://openreview.net/forum?id=9OHFhefeB86 | [7, 7, 6, 8] | 7 | [7, 7, 7, 8] | 7.25 | ||||||||||||||||||||
8 | Learning from Protein Structure with Geometric Vector Perceptrons | https://openreview.net/forum?id=1YLJDvSx6J4 | [7, 10, 6, 6] | 7.25 | [6, 6, 7, 10] | 7.25 | ||||||||||||||||||||
9 | My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control | https://openreview.net/forum?id=N3zUDGN5lO | [6, 6, 7, 7] | 6.5 | [7, 7, 7, 7] | 7 | ||||||||||||||||||||
10 | Retrieval-Augmented Generation for Code Summarization via Hybrid GNN | https://openreview.net/forum?id=zv-typ1gPxA | [7, 7, 7] | 7 | [7, 7, 7] | 7 | ||||||||||||||||||||
11 | Spatio-Temporal Graph Scattering Transform | https://openreview.net/forum?id=CF-ZIuSMXRz | [6, 7, 9, 6] | 7 | [6, 6, 7, 9] | 7 | ||||||||||||||||||||
12 | RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs | https://openreview.net/forum?id=tGZu6DlbreV | [5, 5, 8, 7] | 6.25 | [6, 7, 7, 8] | 7 | ||||||||||||||||||||
13 | Graph-Based Continual Learning | https://openreview.net/forum?id=HHSEKOnPvaO | [8, 7, 7, 6] | 7 | [6, 7, 7, 8] | 7 | ||||||||||||||||||||
14 | Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning | https://openreview.net/forum?id=6DOZ8XNNfGN | [7, 7, 7, 6] | 6.75 | [7, 7, 7, 7] | 7 | ||||||||||||||||||||
15 | Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective | https://openreview.net/forum?id=-qh0M9XWxnv | [6, 5, 8, 8] | 6.75 | [6, 6, 8, 8] | 7 | ||||||||||||||||||||
16 | Learning to Represent Action Values as a Hypergraph on the Action Vertices | https://openreview.net/forum?id=Xv_s64FiXTv | [8, 6, 7, 5, 5] | 6.2 | [5, 6, 7, 8, 8] | 6.8 | ||||||||||||||||||||
17 | GraphCodeBERT: Pre-training Code Representations with Data Flow | https://openreview.net/forum?id=jLoC4ez43PZ | [6, 7, 7, 7] | 6.75 | [6, 7, 7, 7] | 6.75 | ||||||||||||||||||||
18 | Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking | https://openreview.net/forum?id=WznmQa42ZAx | [5, 7, 7, 6] | 6.25 | [6, 7, 7, 7] | 6.75 | ||||||||||||||||||||
19 | On Graph Neural Networks versus Graph-Augmented MLPs | https://openreview.net/forum?id=tiqI7w64JG2 | [7, 8, 7, 5] | 6.75 | [5, 7, 7, 8] | 6.75 | ||||||||||||||||||||
20 | Interpreting Knowledge Graph Relation Representation from Word Embeddings | https://openreview.net/forum?id=gLWj29369lW | [7, 7, 6, 7] | 6.75 | [6, 7, 7, 7] | 6.75 | ||||||||||||||||||||
21 | Wasserstein Embedding for Graph Learning | https://openreview.net/forum?id=AAes_3W-2z | [8, 6, 6, 5] | 6.25 | [6, 6, 7, 8] | 6.75 | ||||||||||||||||||||
22 | Directed Acyclic Graph Neural Networks | https://openreview.net/forum?id=JbuYF437WB6 | [7, 6, 6] | 6.33 | [6, 7, 7] | 6.67 | ||||||||||||||||||||
23 | Learning continuous-time PDEs from sparse data with graph neural networks | https://openreview.net/forum?id=aUX5Plaq7Oy | [7, 5, 6, 6] | 6 | [6, 6, 7, 7] | 6.5 | ||||||||||||||||||||
24 | Combining Label Propagation and Simple Models out-performs Graph Neural Networks | https://openreview.net/forum?id=8E1-f3VhX1o | [7, 6, 4, 6] | 5.75 | [6, 6, 7, 7] | 6.5 | ||||||||||||||||||||
25 | VEM-GCN: Topology Optimization with Variational EM for Graph Convolutional Networks | https://openreview.net/forum?id=xHqKw3xJQhi | [8, 6, 4, 6] | 6 | [6, 6, 6, 8] | 6.5 | ||||||||||||||||||||
26 | Collective Robustness Certificates | https://openreview.net/forum?id=ULQdiUTHe3y | [7, 7, 5, 6] | 6.25 | [5, 6, 7, 8] | 6.5 | ||||||||||||||||||||
27 | Boost then Convolve: Gradient Boosting Meets Graph Neural Networks | https://openreview.net/forum?id=ebS5NUfoMKL | [9, 6, 5, 6] | 6.5 | [5, 6, 6, 9] | 6.5 | ||||||||||||||||||||
28 | Graph Coarsening with Neural Networks | https://openreview.net/forum?id=uxpzitPEooJ | [4, 6, 7, 7] | 6 | [6, 6, 7, 7] | 6.5 | ||||||||||||||||||||
29 | ColdExpand: Semi-Supervised Graph Learning in Cold Start | https://openreview.net/forum?id=3uiR9bkbDjL | [4, 4, 9, 5] | 5.5 | [5, 6, 6, 9] | 6.5 | ||||||||||||||||||||
30 | CopulaGNN: Towards Integrating Representational and Correlational Roles of Graphs in Graph Neural Networks | https://openreview.net/forum?id=XI-OJ5yyse | [5, 7, 6, 7] | 6.25 | [5, 7, 7, 7] | 6.5 | ||||||||||||||||||||
31 | Adaptive Universal Generalized PageRank Graph Neural Network | https://openreview.net/forum?id=n6jl7fLxrP | [6, 9, 7, 4] | 6.5 | [4, 6, 7, 9] | 6.5 | ||||||||||||||||||||
32 | INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving | https://openreview.net/forum?id=O6LPudowNQm | [7, 7, 6, 5] | 6.25 | [6, 6, 7, 7] | 6.5 | ||||||||||||||||||||
33 | Degree-Quant: Quantization-Aware Training for Graph Neural Networks | https://openreview.net/forum?id=NSBrFgJAHg | [5, 7, 6] | 6 | [6, 6, 7] | 6.33 | ||||||||||||||||||||
34 | Learning Reasoning Paths over Semantic Graphs for Video-grounded Dialogues | https://openreview.net/forum?id=hPWj1qduVw8 | [5, 6, 6] | 5.67 | [6, 6, 7] | 6.33 | ||||||||||||||||||||
35 | Optimizing Memory Placement using Evolutionary Graph Reinforcement Learning | https://openreview.net/forum?id=-6vS_4Kfz0 | [5, 7, 5, 6] | 5.75 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
36 | Embedding a random graph via GNN: mean-field inference theory and RL applications to NP-Hard multi-robot/machine scheduling | https://openreview.net/forum?id=pXmtZdDW16 | [5, 5, 7, 7] | 6 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
37 | AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models | https://openreview.net/forum?id=QkRbdiiEjM | [5, 6, 7, 7] | 6.25 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
38 | Compositional Video Synthesis with Action Graphs | https://openreview.net/forum?id=tyd9yxioXgO | [7, 5, 7, 6] | 6.25 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
39 | A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks | https://openreview.net/forum?id=TR-Nj6nFx42 | [6, 7, 7, 5] | 6.25 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
40 | Learning Parametrised Graph Shift Operators | https://openreview.net/forum?id=0OlrLvrsHwQ | [3, 6, 6, 7] | 5.5 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
41 | MARS: Markov Molecular Sampling for Multi-objective Drug Discovery | https://openreview.net/forum?id=kHSu4ebxFXY | [4, 7, 6, 8] | 6.25 | [4, 6, 7, 8] | 6.25 | ||||||||||||||||||||
42 | ForceNet: A Graph Neural Network for Large-Scale Quantum Chemistry Simulation | https://openreview.net/forum?id=K3qa-sMHpQX | [7, 6, 5, 7] | 6.25 | [5, 6, 7, 7] | 6.25 | ||||||||||||||||||||
43 | On Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections | https://openreview.net/forum?id=xgGS6PmzNq6 | [5, 5, 7, 6] | 5.75 | [5, 5, 7, 7] | 6 | ||||||||||||||||||||
44 | Warpspeed Computation of Optimal Transport, Graph Distances, and Embedding Alignment | https://openreview.net/forum?id=AM0PBmqmojH | [5, 7, 6, 5] | 5.75 | [5, 6, 6, 7] | 6 | ||||||||||||||||||||
45 | Simple Spectral Graph Convolution | https://openreview.net/forum?id=CYO5T-YjWZV | [6, 6, 5, 4] | 5.25 | [5, 6, 6, 7] | 6 | ||||||||||||||||||||
46 | Non-Local Graph Neural Networks | https://openreview.net/forum?id=heqv8eIweMY | [4, 4, 8, 7] | 5.75 | [4, 6, 7, 7] | 6 | ||||||||||||||||||||
47 | Structural Landmarking and Interaction Modelling: on Resolution Dilemmas in Graph Classification | https://openreview.net/forum?id=JCz05AtXO3y | [4, 6, 6, 6] | 5.5 | [6, 6, 6, 6] | 6 | ||||||||||||||||||||
48 | FLAG: Adversarial Data Augmentation for Graph Neural Networks | https://openreview.net/forum?id=mj7WsaHYxj | [6, 5, 5, 7] | 5.75 | [5, 6, 6, 7] | 6 | ||||||||||||||||||||
49 | Learning Contextualized Knowledge Graph Structures for Commonsense Reasoning | https://openreview.net/forum?id=lJuOUWlAC8i | [7, 5, 5] | 5.67 | [5, 6, 7] | 6 | ||||||||||||||||||||
50 | Global Attention Improves Graph Networks Generalization | https://openreview.net/forum?id=H-BVtEaipej | [5, 7, 6, 4] | 5.5 | [5, 6, 6, 7] | 6 | ||||||||||||||||||||
51 | The Surprising Power of Graph Neural Networks with Random Node Initialization | https://openreview.net/forum?id=L7Irrt5sMQa | [5, 5, 7, 7] | 6 | [5, 5, 7, 7] | 6 | ||||||||||||||||||||
52 | A Simple and General Graph Neural Network with Stochastic Message Passing | https://openreview.net/forum?id=fhcMwjavKEZ | [1, 6, 7, 8] | 5.5 | [3, 6, 7, 8] | 6 | ||||||||||||||||||||
53 | Accurate Learning of Graph Representations with Graph Multiset Pooling | https://openreview.net/forum?id=JHcqXGaqiGn | [7, 4, 5, 4] | 5 | [4, 6, 7, 7] | 6 | ||||||||||||||||||||
54 | Causal Screening to Interpret Graph Neural Networks | https://openreview.net/forum?id=nzKv5vxZfge | [4, 7, 5, 6] | 5.5 | [5, 5, 7, 7] | 6 | ||||||||||||||||||||
55 | Isometric Transformation Invariant and Equivariant Graph Convolutional Networks | https://openreview.net/forum?id=FX0vR39SJ5q | [5, 4, 5] | 4.67 | [5, 6, 7] | 6 | ||||||||||||||||||||
56 | Global Node Attentions via Adaptive Spectral Filters | https://openreview.net/forum?id=w6Vm1Vob0-X | [4, 7, 7] | 6 | [4, 7, 7] | 6 | ||||||||||||||||||||
57 | Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach | https://openreview.net/forum?id=HmAhqnu3qu | [5, 6, 7] | 6 | [5, 6, 7] | 6 | ||||||||||||||||||||
58 | How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision | https://openreview.net/forum?id=Wi5KUNlqWty | [7, 5, 8, 4] | 6 | [4, 5, 7, 8] | 6 | ||||||||||||||||||||
59 | Graph Learning via Spectral Densification | https://openreview.net/forum?id=t4EWDRLHwcZ | [7, 8, 4, 5] | 6 | [5, 5, 6, 8] | 6 | ||||||||||||||||||||
60 | Self-supervised Graph-level Representation Learning with Local and Global Structure | https://openreview.net/forum?id=DAaaaqPv9-q | [5, 6, 4, 8] | 5.75 | [5, 5, 6, 8] | 6 | ||||||||||||||||||||
61 | Learning Latent Topology for Graph Matching | https://openreview.net/forum?id=wjJ3pR-ZQD | [4, 4, 6, 8, 6] | 5.6 | [4, 4, 6, 7, 8] | 5.8 | ||||||||||||||||||||
62 | Breaking the Expressive Bottlenecks of Graph Neural Networks | https://openreview.net/forum?id=ztMLindFLWR | [5, 5, 7, 6, 4] | 5.4 | [5, 5, 6, 6, 7] | 5.8 | ||||||||||||||||||||
63 | Single-Node Attack for Fooling Graph Neural Networks | https://openreview.net/forum?id=u4WfreuXxnk | [6, 6, 6, 5, 5] | 5.6 | [5, 6, 6, 6, 6] | 5.8 | ||||||||||||||||||||
64 | World Model as a Graph: Learning Latent Landmarks for Planning | https://openreview.net/forum?id=1NRMmEUyXMu | [4, 7, 4, 5] | 5 | [5, 5, 6, 7] | 5.75 | ||||||||||||||||||||
65 | Learning to Deceive Knowledge Graph Augmented Models via Targeted Perturbation | https://openreview.net/forum?id=b7g3_ZMHnT0 | [6, 4, 7, 4] | 5.25 | [4, 6, 6, 7] | 5.75 | ||||||||||||||||||||
66 | Predictive Coding Approximates Backprop along Arbitrary Computation Graphs | https://openreview.net/forum?id=PdauS7wZBfC | [4, 6, 7, 6] | 5.75 | [4, 6, 6, 7] | 5.75 | ||||||||||||||||||||
67 | Graph Edit Networks | https://openreview.net/forum?id=dlEJsyHGeaL | [7, 7, 4, 3] | 5.25 | [3, 6, 7, 7] | 5.75 | ||||||||||||||||||||
68 | A Unified Framework for Convolution-based Graph Neural Networks | https://openreview.net/forum?id=zUMD--Fb9Bt | [7, 5, 5, 6] | 5.75 | [5, 5, 6, 7] | 5.75 | ||||||||||||||||||||
69 | Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization | https://openreview.net/forum?id=J_pvI6ap5Mn | [5, 6, 6, 7] | 6 | [4, 6, 6, 7] | 5.75 | ||||||||||||||||||||
70 | Sim2SG: Sim-to-Real Scene Graph Generation for Transfer Learning | https://openreview.net/forum?id=wbQXW1XTq_y | [5, 7, 6, 5] | 5.75 | [5, 5, 6, 7] | 5.75 | ||||||||||||||||||||
71 | Data-driven Learning of Geometric Scattering Networks | https://openreview.net/forum?id=Mh1Abj33qI | [4, 8, 5, 6] | 5.75 | [4, 5, 6, 8] | 5.75 | ||||||||||||||||||||
72 | FactoredRL: Leveraging Factored Graphs for Deep Reinforcement Learning | https://openreview.net/forum?id=wE-3ly4eT5G | [5, 6, 6, 5] | 5.5 | [5, 6, 6, 6] | 5.75 | ||||||||||||||||||||
73 | Energy-based View of Retrosynthesis | https://openreview.net/forum?id=0Hj3tFCSjUd | [5, 5, 5, 8] | 5.75 | [5, 5, 5, 8] | 5.75 | ||||||||||||||||||||
74 | Deep Graph Neural Networks with Shallow Subgraph Samplers | https://openreview.net/forum?id=GIeGTl8EYx | [5, 6, 7, 6] | 6 | [5, 5, 6, 7] | 5.75 | ||||||||||||||||||||
75 | DialoGraph: Incorporating Interpretable Strategy-Graph Networks into Negotiation Dialogues | https://openreview.net/forum?id=kDnal_bbb-E | [6, 5, 5, 6] | 5.5 | [5, 6, 6, 6] | 5.75 | ||||||||||||||||||||
76 | Lossless Compression of Structured Convolutional Models via Lifting | https://openreview.net/forum?id=oxnp2q-PGL4 | [5, 5, 6] | 5.33 | [5, 6, 6] | 5.67 | ||||||||||||||||||||
77 | Discrete Graph Structure Learning for Forecasting Multiple Time Series | https://openreview.net/forum?id=WEHSlH5mOk | [7, 4, 6] | 5.67 | [4, 6, 7] | 5.67 | ||||||||||||||||||||
78 | To Understand Representation of Layer-aware Sequence Encoders as Multi-order-graph | https://openreview.net/forum?id=lDjgALS4qs8 | [5, 5, 6] | 5.33 | [5, 6, 6] | 5.67 | ||||||||||||||||||||
79 | A Framework For Differentiable Discovery Of Graph Algorithms | https://openreview.net/forum?id=ueiBFzt7CiK | [7, 6, 4] | 5.67 | [4, 6, 7] | 5.67 | ||||||||||||||||||||
80 | Learning to Search for Fast Maximum Common Subgraph Detection | https://openreview.net/forum?id=HP-tcf48fT | [5, 5, 7] | 5.67 | [5, 5, 7] | 5.67 | ||||||||||||||||||||
81 | GG-GAN: A Geometric Graph Generative Adversarial Network | https://openreview.net/forum?id=qiAxL3Xqx1o | [7, 5, 6, 5, 5] | 5.6 | [5, 5, 5, 6, 7] | 5.6 | ||||||||||||||||||||
82 | On the Bottleneck of Graph Neural Networks and its Practical Implications | https://openreview.net/forum?id=i80OPhOCVH2 | [6, 5, 8, 4, 5] | 5.6 | [4, 5, 5, 6, 8] | 5.6 | ||||||||||||||||||||
83 | Generalizing Graph Convolutional Networks via Heat Kernel | https://openreview.net/forum?id=yBJihVXahXc | [5, 7, 5, 6] | 5.75 | [5, 5, 6, 6] | 5.5 | ||||||||||||||||||||
84 | Generative Scene Graph Networks | https://openreview.net/forum?id=RmcPm9m3tnk | [6, 4, 6, 5] | 5.25 | [4, 6, 6, 6] | 5.5 | ||||||||||||||||||||
85 | Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy | https://openreview.net/forum?id=bIQF55zCpWf | [6, 5, 7, 5] | 5.75 | [5, 5, 6, 6] | 5.5 | ||||||||||||||||||||
86 | Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification | https://openreview.net/forum?id=B9t708KMr9d | [7, 6, 4, 5] | 5.5 | [4, 5, 6, 7] | 5.5 | ||||||||||||||||||||
87 | Multi-hop Attention Graph Neural Network | https://openreview.net/forum?id=muppfCkU9H1 | [7, 8, 4, 5] | 6 | [4, 5, 6, 7] | 5.5 | ||||||||||||||||||||
88 | Accurately Solving Rod Dynamics with Graph Learning | https://openreview.net/forum?id=v2tmeZVV9-c | [4, 6, 5, 4] | 4.75 | [4, 6, 6, 6] | 5.5 | ||||||||||||||||||||
89 | Learning Discrete Adaptive Receptive Fields for Graph Convolutional Networks | https://openreview.net/forum?id=pHkBwAaZ3UK | [5, 5, 4, 7] | 5.25 | [5, 5, 5, 7] | 5.5 | ||||||||||||||||||||
90 | Recursive Neighborhood Pooling for Graph Representation Learning | https://openreview.net/forum?id=jH7wTMOYvbw | [6, 6, 4, 6] | 5.5 | [4, 6, 6, 6] | 5.5 | ||||||||||||||||||||
91 | On Low Rank Directed Acyclic Graphs and Causal Structure Learning | https://openreview.net/forum?id=gdtGg1hCK2 | [7, 5, 6, 6] | 6 | [5, 5, 6, 6] | 5.5 | ||||||||||||||||||||
92 | Inductive Collaborative Filtering via Relation Graph Learning | https://openreview.net/forum?id=xfNotLXwtQb | [6, 6, 4, 6] | 5.5 | [4, 6, 6, 6] | 5.5 | ||||||||||||||||||||
93 | Iterative Graph Self-Distillation | https://openreview.net/forum?id=Z532uNJyG5y | [6, 5, 5, 6] | 5.5 | [5, 5, 6, 6] | 5.5 | ||||||||||||||||||||
94 | Don't stack layers in graph neural networks, wire them randomly | https://openreview.net/forum?id=eZllW0F5aM_ | [7, 3, 8, 5] | 5.75 | [4, 5, 5, 8] | 5.5 | ||||||||||||||||||||
95 | SoGCN: Second-Order Graph Convolutional Networks | https://openreview.net/forum?id=JeweO9-QqV- | [5, 5, 7, 5] | 5.5 | [5, 5, 5, 7] | 5.5 | ||||||||||||||||||||
96 | Towards Robust Graph Neural Networks against Label Noise | https://openreview.net/forum?id=H38f_9b90BO | [6, 5, 4, 7] | 5.5 | [4, 5, 6, 7] | 5.5 | ||||||||||||||||||||
97 | Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data | https://openreview.net/forum?id=gW8n0uD6rl | [5, 5, 5, 5] | 5 | [5, 5, 6, 6] | 5.5 | ||||||||||||||||||||
98 | Beyond GNNs: A Sample Efficient Architecture for Graph Problems | https://openreview.net/forum?id=Px7xIKHjmMS | [3, 5, 8, 5] | 5.25 | [4, 5, 5, 8] | 5.5 | ||||||||||||||||||||
99 | SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks | https://openreview.net/forum?id=a5KvtsZ14ev | [5, 5, 7, 5, 5] | 5.4 | [5, 5, 5, 5, 7] | 5.4 | ||||||||||||||||||||
100 | Matrix Shuffle-Exchange Networks for Hard 2D Tasks | https://openreview.net/forum?id=Ns8v4jHGyAV | [8, 4, 4] | 5.33 | [4, 4, 8] | 5.33 |