| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Primary strategy | Impact area | Linked resource, [Open Access articles flagged], and full citation | ||||||||||||||||||
| 2 | Cover Crops | Soil Health | Conventional and organic farms with more intensive management have lower soil functionality. Sophie Q. van Rijssel et al., Conventional and organic farms with more intensive management have lower soil functionality. Science388,410-415(2025).DOI:10.1126/science.adr0211 | ||||||||||||||||||
| 3 | Cover Crops | Soil Health | Soil bacterial communities benefit from long-term cover crop mixtures. Gurmessa, B., Udawatta, R.P., Rambadagalla, R.T., and Reinbott, T. 2025. Soil bacterial communities benefit from long-term cover crop mixtures. European Journal of Soil Biology. 124 (2025) 103714. Doi.org/10.1016/j.ejsobi.2025.103714 | ||||||||||||||||||
| 4 | Agroforestry | Agronomic | Frontiers in alley cropping: Transformative solutions for temperate agriculture. Wolz, K.J., Lovell, S.T., Branham, B.E., Branham, B.E., Eddy, W.C., Keeley, K., Revord, R.S., Wander, M.M., Yang, W.H., & DeLucia, E.H.. (2018). Frontiers in alley cropping: Transformative solutions for temperate agriculture. Global Change Biology, 24, 883–894. https://doi.org/10.1111/gcb.13986 | ||||||||||||||||||
| 5 | Cover Crops | Agronomic | What do we know about cover crop efficacy in the North Central United States? Cates, A. M., G. R. Sanford, L. W. Good, and R. D. Jackson. 2018. What do we know about cover crop efficacy in the North Central United States? Journal of Soil and Water Conservation 73:153A-157A. | ||||||||||||||||||
| 6 | Cover Crops | Agronomic | Establishment and function of cover crops interseeded into corn. [Open Access] Noland, R.L., Wells, M.S., Sheaffer, C.C., Baker, J.M., Martinson, K.L. and J.A. Coulter. 2018. Establishment and function of cover crops interseeded into corn. Crop Science 58(2): 863-873. | ||||||||||||||||||
| 7 | Cover Crops | Agronomic | Nitrogen fixation and productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. [Open Access] Perrone, S., Grossman, J., Liebman, A., Sooksa-nguan, T., and J. Gutknecht. 2020. Nitrogen fixation and productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. Nutrient Cycling in Agroecosystems 117:61-76. | ||||||||||||||||||
| 8 | Cover Crops | Agronomic | Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. [Open Access] Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J. and K. O'Neil. 2005. Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. Agron. J. 97: 322-332. | ||||||||||||||||||
| 9 | Cover Crops | Agronomic | Cover crop-based reduced tillage management impacts organic squash yield, pest pressure, and management time. [Open Access] Bruce D, Silva EM and Dawson JC (2022) Cover crop-based reduced tillage management impacts organic squash yield, pest pressure, and management time. Front. Sustain. Food Syst. 6:991463. doi: https://doi.org/10.3389/fsufs.2022.991463 | ||||||||||||||||||
| 10 | Cover Crops | Agronomic | Suppression of weed and insect populations by living cover crop mulches in organic squash production. [Open Access] Bruce D, Silva EM and Dawson JC (2022) Suppression of weed and insect populations by living cover crop mulches in organic squash production. Front. Sustain. Food Syst. 6:995224. doi: 10.3389/fsufs.2022.995224 | ||||||||||||||||||
| 11 | Cover Crops | Agronomic | Comparing cover crop research in farmer-led and researcher-led experiments in the Western Corn Belt. [Open Access] Koehler-Cole K, Basche A, Thompson L and Rees J (2023) Comparing cover crop research in farmer-led and researcher-led experiments in the Western Corn Belt. Front. Sustain. Food Syst. 7:1064251. doi: 10.3389/fsufs.2023.1064251 | ||||||||||||||||||
| 12 | Cover Crops | Agronomic | Legume cover crops and tillage impact nitrogen dynamics in organic corn production. Liebman, A.M., J. Grossman, M. Brown, M.S. Wells, S.C. Reberg-Horton, and W. Shi. 2018. Legume cover crops and tillage impact nitrogen dynamics in organic corn production. Agronomy Journal. 110:1046-1057. https://doi.org/10.2134/agronj2017.08.0474 | ||||||||||||||||||
| 13 | Multiple | Agronomic | The impact of agricultural landscape diversification on U.S. crop production. Burchfield, E.K., Nelson, K.S., & Spangler, K. (2019). The impact of agricultural landscape diversification on U.S. crop production. Agriculture, Ecosystems & Environment, 285. https://doi.org/10.1016/j.agee.2019.106615 | ||||||||||||||||||
| 14 | Multiple | Agronomic | Grazing intermediate wheatgrass (Kernza®) as a dual-use crop for forage and grain production. [Open Access] Clean River Partners. (2021). Grazing intermediate wheatgrass (Kernza®) as a dual-use crop for forage and grain production. Sustainable Agriculture Demonstration Grant Final Report. https://cleanriverpartners.org/wp-content/uploads/2021/10/clean-river-partners-crwp_final-sadg-progress-report-section-i_fy18_Kernza®-dual-use_final-10-6-21.pdf | ||||||||||||||||||
| 15 | Perennial Biomass | Agronomic | Poplar and shrub willow energy crops in the United States: field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model. Volk, T.A., Berguson, B., Daly, C., Halbleib, M.D., Miller, R., Rials, T.G., Abrahamson, L.P., Buchman, D., Buford, M., Cunningham, M.W., Eisenbies, M., Fabio, E.S., Hallen, K., Heavey, J., Johnson, G.A., Kuzovkina, Y.A., Liu, B., Mcmahon, B., Rousseau, R., Shi, S., Shuren, R., Smart, L.B., Stanosz, G., Stanton, B., Stokes, B., & Wright, J. (2018). Poplar and shrub willow energy crops in the United States: field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM model. GCB Bioenergy, 10, 735-751. https://doi.org/10.1111/gcbb.12498 | ||||||||||||||||||
| 16 | Perennial Grains | Agronomic | Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Gabriel de Oliveira, Nathaniel A. Brunsell, Caitlyn E. Sutherlin, Timothy E. Crews, Lee R. DeHaan (2018). Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agricultural and Forest Meteorology. Volume 249, | ||||||||||||||||||
| 17 | Perennial Grains | Agronomic | Carbon and water relations in perennial Kernza (Thinopyrum intermedium): An overview. Gabriel de Oliveira, Nathaniel A. Brunsell, Timothy E. Crews, Lee R. DeHaan, Giulia Vico. Carbon and water relations in perennial Kernza (Thinopyrum intermedium): An overview. (2020) Plant Science, Volume 295, | ||||||||||||||||||
| 18 | Perennial Grains | Agronomic | Nitrogen transfer and yield effects of legumes intercropped with the perennial grain crop intermediate wheatgrass. [Open Access] Reilly EC, Gutknecht JL, Tautges NE, Sheaffer CC, Jungers, JM (2022). Nitrogen transfer and yield effects of legumes intercropped with the perennial grain crop intermediate wheatgrass. Field Crops Research 286: 108627. https://doi.org/10.1016/j.fcr.2022.108627. | ||||||||||||||||||
| 19 | Perennial Grains | Agronomic | Forage yield and profitability of grain‐type intermediate wheatgrass under different harvest schedules. [Open Access] Puka‐Beals, J., Sheaffer, C., & Jungers, J. (2022). Forage yield and profitability of grain‐type intermediate wheatgrass under different harvest schedules. Agrosystems, Geosciences & Environment, 5(3), Agrosystems, geosciences & environment, 2022, Vol.5 (3). | ||||||||||||||||||
| 20 | Perennial Grains | Agronomic | How the Nitrogen Economy of a Perennial Cereal-Legume Intercrop Affects Productivity: Can Synchrony Be Achieved? [Open Access] Crews, T.E., Kemp, L., Bowden, J.H., & Murrell, E.G. (2022). How the Nitrogen Economy of a Perennial Cereal-Legume Intercrop Affects Productivity: Can Synchrony Be Achieved? Frontiers in Sustainable Food Systems. | ||||||||||||||||||
| 21 | Perennial Grains | Agronomic | Going where no grains have gone before: From early to mid-succession. [Open Access] Crews, T. E., Blesh, J., Culman, S. W., Hayes, R. C., Jensen, E. S., Mack, M. C., Peoples, M. B., & Schipanski, M. E. (2016a). Going where no grains have gone before: From early to mid-succession. Agriculture, Ecosystems & Environment, 223, 223–238. https://doi.org/10.1016/j.agee.2016.03.012 | ||||||||||||||||||
| 22 | Perennial Grains | Agronomic | Grazing management of “Kernza” intermediate wheatgrass as a dual purpose crop. Picasso, V., Sheaffer, C., Hunter, M., Favre, J., Reser, A., & Jungers, J. (2019). Grazing management of “Kernza” intermediate wheatgrass as a dual purpose crop. SARE Rep. LNC16-383. | ||||||||||||||||||
| 23 | Perennial Grains | Agronomic | Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Hunter, M. C., Sheaffer, C. C., Culman, S. W., & Jungers, J. M. (2020). Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agronomy Journal, https://doi.org/10.1002/agj2.20128 | ||||||||||||||||||
| 24 | Perennial Grains | Agronomic | The Perennial Grain Crop Thinopyrum intermedium (Host)Barkworth & DR Dewey (Kernza™️) as an Element in Crop Rotations: A Pilot Study on Termination Strategies and Pre-Crop Effects on a Subsequent Root Vegetable Dimitrova Mårtensson, L. M., Barreiro, A., & Olofsson, J. (2021). The Perennial Grain Crop Thinopyrum intermedium (Host)Barkworth & DR Dewey (Kernza™️) as an Element in Crop Rotations: A Pilot Study on Termination Strategies and Pre-Crop Effects on a Subsequent Root Vegetable. Agriculture, 11(11), 1175. | ||||||||||||||||||
| 25 | Perennial Grains | Agronomic | Optimal planting date of Kernza intermediate wheatgrass intercropped with red clover. Olugbenle, O., Pinto, P., & Picasso, V. D. (2021). Optimal planting date of Kernza intermediate wheatgrass intercropped with red clover. Agronomy, 11(11), 2227 | ||||||||||||||||||
| 26 | Perennial Grains | Agronomic | Strip-tillage renovation of intermediate wheatgrass (Thinopyrum intermedium) for maintaining grain yield in mature stands. Law, E. P., Pelzer, C. J., Wayman, S., DiTommaso, A., & Ryan, M. R. (2021). Strip-tillage renovation of intermediate wheatgrass (Thinopyrum intermedium) for maintaining grain yield in mature stands. Renewable Agriculture and Food Systems, 36(4), 321-327. | ||||||||||||||||||
| 27 | Perennial Grains | Agronomic | Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Favre, J.R., T. Munoz Castiblanco, D.K. Combs, M.A. Wattiaux, and V.D. Picasso. 2019. Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Animal Feed Science and Technology 258, 114298 DOI: 10.1016/j.anifeedsci.2019.114298 | ||||||||||||||||||
| 28 | Perennial Grains | Agronomic | Genome-wide association study of yield component traits in intermediate wheatgrass and implications in genomic selection and breeding Bajgain, P., X. Zhang, and J.A. Anderson. 2019a. Genome-wide association study of yield component traits in intermediate wheatgrass and implications in genomic selection and breeding. G3 Genes Genomes Genetics. 9:2429-2439. | ||||||||||||||||||
| 29 | Perennial Grains | Agronomic | Development and evolution of an Intermediate Wheatgrass domestication program. DeHaan, L., M. Christians, J. Crain, and J. Poland. 2018. Development and evolution of an Intermediate Wheatgrass domestication program. Sustainability 10:1499. | ||||||||||||||||||
| 30 | Perennial Grains | Agronomic | Sustained productivity and agronomic potential of perennial rice. [Open Access] Zhang, S., Huang, G., Zhang, Y. et al. Sustained productivity and agronomic potential of perennial rice. Nat Sustain 6, 28–38 (2023). https://doi.org/10.1038/s41893-022-00997-3 | ||||||||||||||||||
| 31 | Winter Annuals | Agronomic | Management of pennycress as a winter annual cash cover crop. A review. [Open Access] Cubins, J.A., Wells, M.S., Frels, K., Ott, M.A., Forcella, F., Johnson, G.A., Walia, M.K., Becker, R.L. and R.W. Gesch. 2019. Management of pennycress as a winter annual cash cover crop. A review. Agronomy for Sustainable Development 39(5):46. | ||||||||||||||||||
| 32 | Winter Annuals | Agronomic | Yield Tradeoffs and Nitrogen between Pennycress, Camelina, and Soybean in Relay- and Double-Crop Systems. Johnson, Gregg & Wells, Michael & Anderson, Kevin & Gesch, Russ & Forcella, Frank & Wyse, Donald. (2017). Yield Tradeoffs and Nitrogen between Pennycress, Camelina, and Soybean in Relay- and Double-Crop Systems. Agronomy Journal. 109. 10.2134/agronj2017.02.0065. | ||||||||||||||||||
| 33 | Winter Annuals | Agronomic | Interseeded pennycress and camelina yield and influence on row crops. Patel, Swetabh & Lenssen, Andrew & Moore, Kenneth & Mohammed, Yesuf & Gesch, Russ & Wells, Michael & Johnson, Burton & Berti, Marisol & Matthees, Heather. (2021). Interseeded pennycress and camelina yield and influence on row crops. Agronomy Journal. 113. 10.1002/agj2.20655. | ||||||||||||||||||
| 34 | Winter Annuals | Agronomic | Evaluation of soybean selection and sowing date in a continuous cover relay-cropping system with pennycress. [Open Access] Gesch RW, Mohammed YA and Matthees HL (2023) Evaluation of soybean selection and sowing date in a continuous cover relay-cropping system with pennycress. Front. Sustain. Food Syst. 6:961099. doi: 10.3389/fsufs.2022.961099 | ||||||||||||||||||
| 35 | Winter Annuals | Agronomic | Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA. Wittenberg, A., Anderson, J.V., & Berti, M.T. (2020). Crop growth and productivity of winter camelina in response to sowing date in the northwestern Corn Belt of the USA. Industrial Crops and Products, 158. https://doi.org/10.1016/j.indcrop.2020.113036. | ||||||||||||||||||
| 36 | Winter Oilseeds | Agronomic | Interseeded pennycress and camelina yield and influence on row crops. [Open Access] Patel, S, Lenssen, A.W., Moore, K.J., Mohammed, Y.A., Gesch, R.W., Wells, M.S., Johnson, B.L., Berti, M.T., & Matthees, H.L. (2021). Interseeded pennycress and camelina yield and influence on row crops. Agronomy Journal, 113, 2629– 2647. https://doi.org/10.1002/agj2.20655 | ||||||||||||||||||
| 37 | Grazing | Biodiversity and Wildlife | Cattle grazing and grassland birds in the northern tallgrass prairie. Cattle grazing and grassland birds in the northern tallgrass prairie. Ahlering, M.A. and Merkord, C.L. (2016), Cattle grazing and grassland birds in the northern tallgrass prairie. Jour. Wild. Mgmt., 80: 643-654. doi:10.1002/jwmg.1049 | ||||||||||||||||||
| 38 | Grazing | Biodiversity and Wildlife | Influence of intensive rotational grazing on bank erosion, fish habitat quality, and fish communities in southwestern Wisconsin trout streams. J. Lyons, B. M. Weigel, L. K. Paine, D. J. Undersander (2000). Influence of intensive rotational grazing on bank erosion, fish habitat quality, and fish communities in southwestern Wisconsin trout streams. Journal of Soil and Water Conservation 55 (3) 271-276; | ||||||||||||||||||
| 39 | Grazing | Biodiversity and Wildlife | Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Paine, LK; Ribic, CA (2002). Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Agriculture, Ecosystems & Environment, Volume 92, Issue 1, Pages 93-105, ISSN 0167-8809, 10.1016/S0167-8809(01)00269-9. | ||||||||||||||||||
| 40 | Grazing | Biodiversity and Wildlife | Grassland Birds: Fostering Habitats Using Rotational Grazing. [Open Access] Grassland Birds: Fostering Habitats Using Rotational Grazing. Dan Undersander, Stan Temple, Jerry Bartlet, Dave Sample, Laura Paine. University of Wisconsin Extension | ||||||||||||||||||
| 41 | Multiple | Biodiversity and Wildlife | Farmland biodiversity: is habitat heterogeneity the key? Benton TG, Vickery JA, Wilson JD. 2003. Farmland Biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. | ||||||||||||||||||
| 42 | Perennial Biomass | Biodiversity and Wildlife | Bird communities in future bioenergy landscapes of the Upper Midwest. [Open Access] Meehan, T. D., A. H. Hurlbert, and C. Gratton. 2010. Bird communities in future bioenergy landscapes of the Upper Midwest. PNAS 107:18533-18538. | ||||||||||||||||||
| 43 | Perennial Biomass | Biodiversity and Wildlife | Perennial biomass feedstocks enhance avian diversity. [Open Access] Robertson, B. A., P. J. Doran, L. R. Loomis, J. R. Robertson, and D. W. Schemske. 2011. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 3:235-246. | ||||||||||||||||||
| 44 | Perennial Biomass | Biodiversity and Wildlife | Bioenergy cropping systems shape ant community composition and functional roles. [Open Access] Haan NL, Helms JA and Landis DA (2024) Bioenergy cropping systems shape ant community composition and functional roles. Front. Conserv. Sci. 4:1283225. doi: 10.3389/fcosc.2023.1283225 | ||||||||||||||||||
| 45 | Prairie Strips | Biodiversity and Wildlife | Butterfly biodiversity increases with prairie strips and conservation management in row crop agriculture. [Open Access] Kemmerling, L.R., McCarthy, A.C., Brown, C.S. & Haddad, N.M. (2023) Butterfly biodiversity increases with prairie strips and conservation management in row crop agriculture. Insect Conservation and Diversity, 1–10. Available from: https://doi.org/10.1111/icad.12675 | ||||||||||||||||||
| 46 | Winter Annuals | Biodiversity and Wildlife | Using pennycress, camelina, and canola cash cover crops to provision pollinators. Eberle, C.A., Thom, M.D., Nemec, K.T., Forcella, F., Lundgren, J.G., Gesch, R.W., Riedell, W.E., Papiernik, S.K., Wagner, A., Peterson, D.H. and JJ. Eklund. 2015. Using pennycress, camelina, and canola cash cover crops to provision pollinators. Industrial Crops and Products 75:20-25. | ||||||||||||||||||
| 47 | Winter Oilseeds | Biodiversity and Wildlife | Weather and landscape influences on pollinator visitation of flowering winter oilseeds (field penny- cress and winter camelina). Forcella, F., Patel, S., Lenssen, A. W., Hoerning, C., Wells, M. S., Gesch, R. W., & Berti, M. T. (2021). Weather and landscape influences on pollinator visitation of flowering winter oilseeds (field penny- cress and winter camelina). Journal of Applied Entomology, 145(4), 286-294. | ||||||||||||||||||
| 48 | Multiple | Climate | A global meta-analysis of soil organic carbon in the Anthropocene. [Open Acccess] Damien Beillouin, Marc Corbeels, Julien Demenois, David Berre, Annie Boyer, Abigail Fallot, Frédéric Feder, and Rémi Cardinael. 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nature Communications 14 (3700) https://doi.org/10.1038/s41467-023-39338-z | ||||||||||||||||||
| 49 | Agroforestry | Climate | Soil organic carbon sequestration in temperate agroforestry systems - A meta-analysis. [Open Access] Mayer, Stefanie & Wiesmeier, Martin & Sakamoto, Eva & Hübner, Rico & Cardinael, Rémi & Kühnel, Anna & Kögel-Knabner, Ingrid. (2022). Soil organic carbon sequestration in temperate agroforestry systems - A meta-analysis. Agriculture Ecosystems & Environment. 323. 107689. https://doi.org/10.1016/j.agee.2021.107689 | ||||||||||||||||||
| 50 | Silvopasture | Climate | Silvopasture offers climate change mitigation and profit potential for farmers in the eastern United States. [Open Access] Harry Greene, Clare E. Kazanski, Jeremy Kaufman, Ethan Steinberg, Kris Johnson, Susan C. Cook-Patton, and Joe Fargione. 2023. Silvopasture offers climate change mitigation and profit potential for farmers in the eastern United States. Frontiers in Sustainable Food Systems 7:1158459. https://doi.org/10.3389/fsufs.2023.1158459 | ||||||||||||||||||
| 51 | Agroforestry | Climate | Soil carbon sequestration in agroforestry systems: a meta-analysis. De Stefano, A., Jacobson, M.G. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforest Syst 92, 285–299 (2018). https://doi.org/10.1007/s10457-017-0147-9 | ||||||||||||||||||
| 52 | Grazing | Climate | What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? [Open Access] Booker, K., Huntsinger, L., Bartolome, J. W., Sayre, N. F., & Stewart, W. (2012). What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Global Environmental Change, 22(2), 313-322. doi: 10.1016/j.gloenvcha.2012.10.001. | ||||||||||||||||||
| 53 | Grazing | Climate | Adaptive multi-paddock grazing increases soil carbon stocks and decreases the carbon footprint of beef production in Ontario, Canada. Mehre, J., K. Schneider, S. Jayasundara, A. Gillespie, and C. Wagner-Riddle. 2024. Adaptive multi-paddock grazing increases soil carbon stocks and decreases the carbon footprint of beef production in Ontario, Canada. Journal of Environmental Management 371:123255. https://www.sciencedirect.com/science/article/pii/S0301479724032419?via%3Dihub | ||||||||||||||||||
| 54 | Agroforestry | Climate | Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions. [Open Access] Schoeneberger, Michele M.; Bentrup, Gary; Patel-Weynand, Toral, eds. 2017. Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions. Gen. Tech. Report WO-96. Washington, DC: U.S. Department of Agriculture, Forest Service. 228 p. https://doi.org/10.2737/WO-GTR-96. | ||||||||||||||||||
| 55 | Agroforestry | Climate | Carbon sequestration by forests and agroforests: a reality check for the United States. [Open Access] Udawatta, R.P., D. Water, S. Jose. (2022). Carbon sequestration by forests and agroforests: a reality check for the United States. Carbon Footprints 2022:1:8. https://dx.doi.org/10.20517/cf.2022.06 | ||||||||||||||||||
| 56 | Agroforestry | Climate | USDA National Agroforestry Center Agroforestry and Climate Change Database [Open Access] Scientific literature on agroforestry’s role in adaptation and mitigation under climatic change, as well as the effects of these stressors on agroforestry. This database focuses on research in the temperate agricultural regions from 1992 to the present. | ||||||||||||||||||
| 57 | Agroforestry | Climate | Agroforestry strategies to sequester carbon in temperate North America. Udawatta, R. P., & Jose, S. (2012). Agroforestry strategies to sequester carbon in temperate North America. Agroforestry Systems, 86(2), 225–242. https://doi.org/10.1007/s10457-012-9561-1 | ||||||||||||||||||
| 58 | Agroforestry | Climate | Priority science can accelerate agroforestry as a natural climate solution. Terasaki Hart, D.E., Yeo, S., Almaraz, M. et al. Priority science can accelerate agroforestry as a natural climate solution. Nat. Clim. Chang. (2023). https://doi.org/10.1038/s41558-023-01810-5 | ||||||||||||||||||
| 59 | Agroforestry | Climate | Large climate mitigation potential from adding trees to agricultural lands. Chapman, M., Walker, W. S., Cook-Patton, S. C., Ellis, P. W., Farina, M., Griscom, B. W., & Baccini, A. (2020). Large climate mitigation potential from adding trees to agricultural lands. Global Change Biology, 26(8), 4357-4365. | ||||||||||||||||||
| 60 | Cover Crops | Climate | Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Tautges, N. E., Chiartas, J. L., Gaudin, A. C. M., O’Geen, A. T., Herrera, I., & Scow, K. M. (2019). Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology, 25(11), 3753–3766. https://doi.org/10.1111/gcb.14762 | ||||||||||||||||||
| 61 | Cover Crops | Climate | Cover crops and carbon sequestration: Lessons from US studies. Blanco-Canqui, H. (2022). Cover crops and carbon sequestration: Lessons from US studies. Soil Science Society of America Journal, 86, 501–519. https://doi.org/10.1002/saj2.20378 | ||||||||||||||||||
| 62 | Grazing | Climate | Managing grazing lands to improve soils and promote climate change adaptation and mitigation: a global synthesis. [Open Access] DeLonge, Marcia and Basche, Andrea D., Managing grazing lands to improve soils and promote climate change adaptation and mitigation: A global synthesis (2018). Renewable Agriculture and Food Systems 33 (2018), pp 267–278. | ||||||||||||||||||
| 63 | Grazing | Climate | Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. [Open Access] Jackson, R. D. 2022. Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. Agriculture and Environmental Letters, Vol. 7, No. 1. | ||||||||||||||||||
| 64 | Grazing | Climate | Potential mitigation of midwest grass-finished beef production emissions with soil carbon sequestration in the United States of America. [Open Access] Rowntree, Jason & Ryals, Rebecca & DeLonge, Marcia & Teague, W.R. & Chiavegato, Marília & Byck, Peter & Wang, Tong & Xu, Sutie. (2016). Potential mitigation of midwest grass-finished beef production emissions with soil carbon sequestration in the United States of America. Future of Food: Journal of Food, Agriculture and Society. 4. 31. | ||||||||||||||||||
| 65 | Grazing | Climate | Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Yichao Rui, RD. Jackson, MF Cotrufo, GR Sanford, BJ Spiesman, L Deiss, SW Culman, C Liang, MD Ruark. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences Feb 2022, 119 (7) e2118931119; DOI: 10.1073/pnas.2118931119 | ||||||||||||||||||
| 66 | Grazing | Climate | Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. [Open Access] Paige L. Stanley, Jason E. Rowntree, David K. Beede, Marcia S. DeLonge, Michael W. Hamm (2018). Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems 162 pg 249-258 | ||||||||||||||||||
| 67 | Grazing | Climate | The role of ruminants in reducing agriculture’s carbon footprint in North America. Teague, W. R., Apfelbaum, S., Lal, R., Kreuter, U. P., Rowntree, J., Davies, C. A., Conser, R., Rasmussen, M., Hatfield, J., Wang, T., Wang, F., & Byck, P. (2016). The role of ruminants in reducing agriculture’s carbon footprint in North America. Journal of Soil and Water Conservation, 71(2), 156–164. https://doi.org/10.2489/jswc.71.2.156 | ||||||||||||||||||
| 68 | Multiple | Climate | Natural climate solutions for Canada. [Open Access] Drever CR, Cook-Patton SC, Akhter F, Badiou PH, Chmura GL, Davidson SJ, Desjardins RL, Dyk A, Fargione JE, Fellows M, Filewod B, Hessing-Lewis M, Jayasundara S, Keeton WS, Kroeger T, Lark TJ, Le E, Leavitt SM, LeClerc ME, Lemprière TC, Metsaranta J, McConkey B, Neilson E, St-Laurent GP, Puric-Mladenovic D, Rodrigue S, Soolanayakanahally RY, Spawn SA, Strack M, Smyth C, Thevathasan N, Voicu M, Williams CA, Woodbury PB, Worth DE, Xu Z, Yeo S, Kurz WA. Natural climate solutions for Canada. Sci Adv. 2021 Jun 4;7(23):eabd6034. | ||||||||||||||||||
| 69 | Multiple | Climate | Natural climate solutions for the United States. [Open Access] Joseph E. Fargione, Steven Bassett, Timothy Boucher, et Al. Natural climate solutions for the United States. Science Advances 14 Nov 2018 : EAAT1869 | ||||||||||||||||||
| 70 | Multiple | Climate | Long‐term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA. [Open Access] Gelfand, I., Shcherbak, I., Millar, N., Kravchenko, A.N. and Robertson, G.P. (2016), Long‐term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA. Glob Change Biol, 22: 3594-3607. doi:10.1111/gcb.13426 | ||||||||||||||||||
| 71 | Multiple | Climate | Natural climate solutions. [Open Access] Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shoch D, Siikamäki JV, Smith P, Woodbury P, Zganjar C, Blackman A, Campari J, Conant RT, Delgado C, Elias P, Gopalakrishna T, Hamsik MR, Herrero M, Kiesecker J, Landis E, Laestadius L, Leavitt SM, Minnemeyer S, Polasky S, Potapov P, Putz FE, Sanderman J, Silvius M, Wollenberg E, Fargione J. Natural climate solutions. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11645-11650. | ||||||||||||||||||
| 72 | Multiple | Climate | Land-based measures to mitigate climate change: Potential and feasibility by country. [Open Access] Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, Deppermann A, Doelman J, Emmet-Booth J, Engelmann J, Fricko O, Frischmann C, Funk J, Grassi G, Griscom B, Havlik P, Hanssen S, Humpenöder F, Landholm D, Lomax G, Lehmann J, Mesnildrey L, Nabuurs GJ, Popp A, Rivard C, Sanderman J, Sohngen B, Smith P, Stehfest E, Woolf D, Lawrence D. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob Chang Biol. 2021 Dec;27(23):6025-6058. | ||||||||||||||||||
| 73 | Multiple | Climate | Farming to Capture Carbon and Address Climate Change Through Building Soil Health [Open Access] Boody, G. 2020, January 27. Farming to Capture Carbon and Address Climate Change Through Building Soil Health. | ||||||||||||||||||
| 74 | Multiple | Climate | Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers [Open Access] Mase, A. S., Gramig, B. M., & Prokopy, L. S. (2017). Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management, 15, 8-17. https://doi.org/10.1016/j.crm.2016.11.004 | ||||||||||||||||||
| 75 | Multiple | Climate | Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. [Open Access] Zomer, R.J.; Bossio, D.A.; Sommer, R. et al. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci Rep 2017, 7. https://doi.org/10.1038/s41598-017-15794-8 | ||||||||||||||||||
| 76 | Multiple | Climate | Agricultural management and soil carbon storage in surface vs. deep layers. Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N., & Robertson, G. P. (2011). Agricultural management and soil carbon storage in surface vs. deep layers. Soil Science Society of America Journal, 75(1), 92-101. | ||||||||||||||||||
| 77 | Multiple | Climate | Regenerative agriculture can provide many environmental benefits, but is not a “silver bullet” for climate change mitigation. [Open Access] Gutknecht, J., & Jungers, J. (2021). Regenerative agriculture can provide many environmental benefits, but is not a “silver bullet” for climate change mitigation. Green Lands Blue Waters. https://greenlandsbluewaters.org/wp-content/uploads/2022/06/Gutknecht-Jungers-Ag-climate- brief-03152021.pdf | ||||||||||||||||||
| 78 | Other | Climate | Limited potential for terrestrial carbon sequestration to offset fossil‐fuel emissions in the upper midwestern US. Fissore, C., Espeleta, J., Nater, E.A., Hobbie, S.E. and Reich, P.B. (2010), Limited potential for terrestrial carbon sequestration to offset fossil‐fuel emissions in the upper midwestern US. Frontiers in Ecology and the Environment, 8: 409-413. doi:10.1890/090059 | ||||||||||||||||||
| 79 | Other | Climate | The economic value of grassland species for carbon storage. [Open Access] Hungate, B. A., E. B. Barbier, A. W. Ando, S. P. Marks, P. B. Reich, N. van Gestel, D. Tilman, J. M. H. Knops, D. U. Hooper, B. J. Butterfield, and B. J. Cardinale. 2017. The economic value of grassland species for carbon storage. Sci Adv 3:e1601880. | ||||||||||||||||||
| 80 | Other | Climate | Environmental outcomes of the US Renewable Fuel Standard. [Open Access] Lark, T., Hendricks, N., Smith, A., Pates, N., Spawn-Lee, S., Bougie, M., Booth, E., Kucharik, C., and Gibbs, H. (2022). Environmental outcomes of the US Renewable Fuel Standard. Proceedings of the National Academy of Sciences - PNAS, 119(9), 1. | ||||||||||||||||||
| 81 | Other | Climate | Valid inferences about soil carbon in heterogeneous landscapes [Open Access] Stanley, Paige & Spertus, Jacob & Chiartas, Jessica & Stark, Philip & Bowles, Timothy. (2023). Valid inferences about soil carbon in heterogeneous landscapes. Geoderma. 430. 116323. 10.1016/j.geoderma.2022.116323. | ||||||||||||||||||
| 82 | Other | Climate | Do Mitigation Strategies Reduce Global Warming Potential in the Northern U.S. Corn Belt? Johnson, J. M. F., Archer, D. W., Weyers, S. L., & Barbour, N. W. (2011). Do Mitigation Strategies Reduce Global Warming Potential in the Northern U.S. Corn Belt? Journal of Environmental Quality, 40(5), 1551–1559. https://doi.org/10.2134/jeq2011.0105 | ||||||||||||||||||
| 83 | Perennial Biomass | Climate | Sustainable bioenergy production from marginal lands in the US Midwest Gelfand, I., R. Sahajpal, X. Zhang, R. C. Izaurralde, K. L. Gross, and G. P. Robertson. 2013. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514-517. | ||||||||||||||||||
| 84 | Perennial Biomass | Climate | Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. [Open Access] Gelfand, I., S. K. Hamilton, A. N. Kravchenko, R. D. Jackson, K. D. Thelen, and G. P. Robertson. 2020. Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the U.S. with bioenergy from purpose-grown biomass with and without BECCS. Environmental Science & Technology 54:2961-2974. | ||||||||||||||||||
| 85 | Perennial Biomass | Climate | How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? [Open Access] Drewer, J., Finch, J. W., Lloyd, C. R., Baggs, E. M., & Skiba, U. (2011). How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? GCB Bioenergy, 4(4), 408–419. https://doi.org/10.1111/j.1757-1707.2011.01136.x | ||||||||||||||||||
| 86 | Perennial Biomass | Climate | Carbon-negative biofuels from low-input high-diversity grassland biomass. Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314(5805), 1598-1600. | ||||||||||||||||||
| 87 | Perennial Biomass | Climate | Climate benefits of increasing plant diversity in perennial bioenergy crops. [Open Access] Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J., & Smith, T. M. (2019). Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth, 1(4), 434-445. https://doi.org/10.1016/j.oneear.2019.11.011 | ||||||||||||||||||
| 88 | Perennial Grains | Climate | Biomass yield and soil microbial response to management of perennial intermediate wheatgrass (Thinopyrum intermedium) as grain crop and carbon sink. [Open Access] Bergquist, Galen. (2019). Biomass yield and soil microbial response to management of perennial intermediate wheatgrass (Thinopyrum intermedium) as grain crop and carbon sink. Retrieved from the University of Minnesota Digital Conservancy, https://hdl.handle.net/11299/213040. | ||||||||||||||||||
| 89 | Perennial Grains | Climate | Perennial grain crops reduce N2O emissions under specific site conditions. Daly, E., Kim, K., Hernandez-Ramirez, G., & Flesch, T. (2022). Perennial grain crops reduce N2O emissions under specific site conditions. Agriculture, Ecosystems & Environment, 326, 107802. | ||||||||||||||||||
| 90 | Perennials | Climate | Changes in soil organic carbon under perennial crops. [Open Access] Ledo, A, Smith, P, Zerihun, A, et al. Changes in soil organic carbon under perennial crops. Glob Change Biol. 2020; 26: 4158– 4168. https://doi.org/10.1111/gcb.15120 | ||||||||||||||||||
| 91 | Winter Annuals | Climate | A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Brian J. Krohn, Matthias Fripp (2021). A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA, Applied Energy Volume 92, Pages 92-98 | ||||||||||||||||||
| 92 | Winter Annuals | Climate | A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Krohn, B. J., & Fripp, M. (2012). A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Applied Energy, 92, 92-98. | ||||||||||||||||||
| 93 | Winter Oilseeds | Climate | A life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel. [Open Access] Fan, J., Shonnard, D., Kalnes, T., Johnsen, P., & Rao, S. (2013). A life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel. Biomass and Bioenergy, 55, 87-100.http://doi.org/10.1016/j.biombioe.2012.12.0400 | ||||||||||||||||||
| 94 | Winter Oilseeds | Climate | Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Li, X., & Mupondwa, E. (2014). Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. The Science of the total environment, 481, 17–26. https://doi.org/10.1016/j.scitotenv.2014.02.003 | ||||||||||||||||||
| 95 | Agroforestry | Economic | How can windbreaks protect livestock from the cold? [Open Access] Stubblefield, K., Bundy, J., and Siatkowski, J. 2023. How can windbreaks protect livestock from the cold? USDA National Agroforestry Center, Working Trees. | ||||||||||||||||||
| 96 | Agroforestry | Economic | Can windbreaks increase crop yields? [Open Access] Stubblefield, K., Bundy, J., and Siatkowski, J. 2023. Can windbreaks increase crop yields? USDA National Agroforestry Center, Working Trees. | ||||||||||||||||||
| 97 | Agroforestry | Economic | Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study. [Open Access] Lazarus, W. F., Tiffany, D. G., Zalesny Jr, R. S., & Riemenschneider, D. E. (2011). Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study. Journal of Forestry, 109(3), 149-156. | ||||||||||||||||||
| 98 | Agroforestry | Economic | Overcoming bottlenecks in the midwest hazelnut industry: An impact investment plan. [Open Access] Brainard, S.H., Wolz, K.J., Keeley, D., Rodrigues, A., & Selosse, F.J. (2021). Overcoming bottlenecks in the midwest hazelnut industry: An impact investment plan. Savanna Institute. https://www.savannainstitute.org/wp-content/uploads/2021/06/2021-SI-Hazelnut-report_.pdf | ||||||||||||||||||
| 99 | Cover Crops | Economic | Kura Clover Living Mulch Reduces Fertilizer N Requirements and Increases Profitability of Maize. [Open Access] Alexander, J. R. (2019). Kura Clover Living Mulch Reduces Fertilizer N Requirements and Increases Profitability of Maize. MDPI. https://www.mdpi.com/2073-4395/9/8/432 | ||||||||||||||||||
| 100 | Cover Crops | Economic | Policy budget for cover crops and the lesson of crop insurance. [Open Access] Zulauf, C., & Schnitkey, G. (2022). Policy budget for cover crops and the lesson of crop insurance. Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign. https://farmdocdaily.illinois.edu/2022/01/policy-budget-for-cover-crops-and-the-lesson-of-crop-insurance.html |