| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Seeking a formula for how vapor retarders affect mold risk, I ended up converting a printed spreadsheet into a functioning spreadsheet - almost. | |||||||||||||||||||||||||
2 | The source calculates vapor pressure and condensation through a wall. | |||||||||||||||||||||||||
3 | How were the highlighted-yellow parts calculated? .... The blue font parts (+two formulae images on line 13) were added by me. Black is identical to the source. Italics means now calculated (vs just printed). | |||||||||||||||||||||||||
4 | (If you want the source, it's "Vapour Pressure and Condensation", in Canadian Building Digest.) | https://nrc-publications.canada.ca/eng/view/ft/?id=897fca5e-67e2-46e0-9e83-c2c456faadf1 | ||||||||||||||||||||||||
5 | ||||||||||||||||||||||||||
6 | "Consider a wall of 4-inch reinforced concrete with an inside finish of winch plaster over 1 inch of foamed plastic insulation that separates | |||||||||||||||||||||||||
7 | an internal environment of 73°F and 35 per cent RH from an outside environment of 0°F and 80 per cent RH. | |||||||||||||||||||||||||
8 | The actual vapour pressures are, respectively, 0.818 x 0.35 = 0.286 in. Hg and 0.038 x 0.80 = 0.030 in. Hg, and the total pressure difference is 0.256 in. Hg." | |||||||||||||||||||||||||
9 | Interior Temp | 73 | °F | 22.8 | °C | Exterior Temp | 0 | °F | -17.8 | °C | ||||||||||||||||
10 | Interior RH | 35% | Exterior RH | 80% | ||||||||||||||||||||||
11 | Saturation Vapor Pressure | 0.818 | in.Hg | 2.7743 | kPa, by Buck Approximation | Saturation Vapor Pressure | 0.038 | in.Hg | 0.1275 | kPa | by Huang, sub-zero version | |||||||||||||||
12 | 0.8193 | by converting kPa to in.Hg (inches of mercury) | 0.038 | by converting kPa to in.Hg | ||||||||||||||||||||||
13 | Buck Approximation | Huang Approximation | 0.1517 | kPa | by Buck, not right for sub-zero | |||||||||||||||||||||
14 | sub-zero-°C version | |||||||||||||||||||||||||
15 | ||||||||||||||||||||||||||
16 | The pressure difference must be apportioned among the various components of the envelope in proportion to their resistance to vapour flow. | |||||||||||||||||||||||||
17 | Table I. Tabulated Vapour and Temperature Calculations | |||||||||||||||||||||||||
18 | Interior | Air Film | Plaster | Insulation | Concrete | Air Film | Exterior | Total | ||||||||||||||||||
19 | Thickness n | - | 0.75 | 1 | 4 | |||||||||||||||||||||
20 | Permeance M | - | 15 | - | - | - | ||||||||||||||||||||
21 | Permeability µ | - | - | 1.6 | 3.2 | - | ||||||||||||||||||||
22 | Vapour Resistance 1/M , n/µ | 0.07 | 0.63 | 1.25 | 1.94 | |||||||||||||||||||||
23 | % of drop | 0% | 3.43% | 32.19% | 64.38% | 0% | 100% | |||||||||||||||||||
24 | Vapour Pressure Drop for Continuity (in.Hg) | 0 | 0.009 | 0.082 | 0.165 | 0 | 0.256 | (row calculated by either (1) measuring the interior and exterior actual vapor pressures, then multiplying the difference by the % of resistance at that layer, or (2) as some unit conversion from line 22 (dividing line 22 by 7.58 matched the printed #s in line 24) | ||||||||||||||||||
25 | Vapour Pressure for Continuity ("pc") (in.Hg) | 0.286 | 0.286 | 0.278 | 0.195 | 0.030 | 0.030 | Vapour permeability can be expressed in several ways: | ||||||||||||||||||
26 | - vapour resistivity of a material, measured in GNs/kgm (giga Newton seconds per kilogram metre) or MNs/gm (mega Newton seconds per gram metre) | |||||||||||||||||||||||||
27 | Thermal Conductance C | 1.46 | 6.66 | - | - | 6 | - vapour resistance for a given thickness of material, in GNs/kg or MNs/g | |||||||||||||||||||
28 | Thermal Conductivity k | - | - | 0.25 | 12 | - | - vapour resistance factor, also known as th µ-value, which is the resistivity of a material relative to that of still air. It is a factor, and has no units. | |||||||||||||||||||
29 | Thermal Resistance 1/C , n/k | 0.68 | 0.15 | 4.00 | 0.33 | 0.17 | 5.34 | - "perms", short for permeability, used commonly in North America, measured in grains/(ft2 ·h·inHg) | ||||||||||||||||||
30 | Temperature Drop °F | 9 | 2 | 55 | 5 | 2 | 73 | |||||||||||||||||||
31 | Temperature °F | 73 | 64 | 62 | 7 | 2 | 0 | |||||||||||||||||||
32 | Temperature °C | 22.8 | 17.6 | 16.4 | -14.0 | -16.5 | -17.8 | |||||||||||||||||||
33 | ||||||||||||||||||||||||||
34 | Saturation Vapor Pressure | 2.7743 | kPa | 2.0100 | 1.8697 | 0.1816 | 0.1436 | 0.1275 | * intermediary calculation in kPa to get to source's unit (inches of mercury, in.Hg) | |||||||||||||||||
35 | Saturation Vapour Pressure ("ps") | 0.819 | in.Hg | 0.594 | 0.552 | 0.054 | 0.042 | 0.038 | (calculated matches printed) | |||||||||||||||||
36 | Actual Vapour Pressure ("pa") | 0.287 | in.Hg | 0.286 | 0.264 | 0.054 | 0.03 | 0.030 | ||||||||||||||||||
37 | Actual Vapor Pressure (calc'd: SVP x calculated-RH) | 0.287 | in.Hg | 0.2077477914 | 0.193239512 | 0.01876448531 | 0.01484500392 | 0.01318083873 | How did they calculate mid-assembly RH? My calc's in this row don't match the printed data (the row above) because I can't properly calculate mid-assembly RH. | |||||||||||||||||
38 | Actual Vapor Pressure (calc'd: SVP x given-RH ) | 0.287 | (RH not given) | (RH not given) | (RH not given) | (RH not given) | 0.030 | |||||||||||||||||||
39 | ||||||||||||||||||||||||||
40 | Vapour Flow = Vapour Pressure Difference / Vapour Flow Resistance | |||||||||||||||||||||||||
41 | The vapour flow to point A is | |||||||||||||||||||||||||
42 | (0.286 - 0.054) / (0.07 + 0.62) | 0.286 | 0.054 | 0.232 | 0.34 | grain / sq ft / hr | ||||||||||||||||||||
43 | 0.07 | 0.63 | 0.69 | |||||||||||||||||||||||
44 | and that from point A | |||||||||||||||||||||||||
45 | (0.054 - 0.030) / 1.25 | 0.054 | 0.030 | 0.024 | 0.02 | grain / sq ft / hr | ||||||||||||||||||||
46 | 1.25 | 1.25 | ||||||||||||||||||||||||
47 | giving a condensation rate of | |||||||||||||||||||||||||
48 | 0.34 - 0.02 = 0.32 grain/sq ft/hr. | Condensation Rate: | 0.32 | grain / sq ft / hr | 1 perm = 1 grain/(hr ft2 inHg) | |||||||||||||||||||||
49 | ||||||||||||||||||||||||||
50 | Does knowing the condensation rate enable us to factor vapor pressure into calculations of relative humidity? | |||||||||||||||||||||||||
51 | ||||||||||||||||||||||||||
52 | * How did they calculate "Actual Vapor Pressure"? | |||||||||||||||||||||||||
53 | The paper only includes RH inside and outside - it does not include RH (or dewpoint) mid-assembly. | |||||||||||||||||||||||||
54 | Actual Vapor Pressure can be calculated from RH and Temperature. RH can be calculated from Dewpoint and Temperature, but Dewpoint is calc'd from RH and Temp, so: circular reasoning. | |||||||||||||||||||||||||
55 | Temperature °C | 22.8 | 17.6 | 16.4 | -14. | -16.5 | -17.8 | |||||||||||||||||||
56 | Dewpoint | 6.5 | 1.9 | 0.9 | -26.2 | -28.4 | -29.6 | formula source: https://bmcnoldy.rsmas.miami.edu/Humidity.html | ||||||||||||||||||
57 | r.h. | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | formula source: https://bmcnoldy.rsmas.miami.edu/Humidity.html | ||||||||||||||||||
58 | Dewpoint (by sub-zero version of formula) | 8.5 | 3.8 | 2.8 | -25. | -27.3 | -28.4 | |||||||||||||||||||
59 | r.h. (by sub-zero version of formula) | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | |||||||||||||||||||
60 | r.h. (given) | 35.0% | 80.0% | |||||||||||||||||||||||
61 | Why are the r.h. calculations all 35% at every point of the assembly? Circular reasoning / calculating. | |||||||||||||||||||||||||
62 | I used the same indoor RH for the Dewpoint calculations at every point of the assembly. Was there a now-forgotten good reason for that? | |||||||||||||||||||||||||
63 | ||||||||||||||||||||||||||
64 | About the formula for "Saturation Vapor Pressure": | |||||||||||||||||||||||||
65 | ||||||||||||||||||||||||||
66 | Psat in kPa and T in °C. Where A, B, and C are the coefficients of the August-Roche-Magnus approximation. | |||||||||||||||||||||||||
67 | For above-zero temperatures, A = 6.112, B= 17.625 and C= 243.04. | |||||||||||||||||||||||||
68 | For sub-zero temperatures, A = 6.112, B=22.46 and C=272.62. | |||||||||||||||||||||||||
69 | ||||||||||||||||||||||||||
70 | Psat2008 EVAL [ 6.112 * EXP(17.62*Temperature/(243.12+Temperature)) ] | |||||||||||||||||||||||||
71 | PsatSub0 EVAL [ 6.112 * EXP(22.46*Temperature/(272.62+Temperature)) ] | |||||||||||||||||||||||||
72 | -- https://cumuluswiki.org/a/Charts_Definition_Language_(CDL) | |||||||||||||||||||||||||
73 | ||||||||||||||||||||||||||
74 | ||||||||||||||||||||||||||
75 | ||||||||||||||||||||||||||
76 | ||||||||||||||||||||||||||
77 | ||||||||||||||||||||||||||
78 | ||||||||||||||||||||||||||
79 | ||||||||||||||||||||||||||
80 | Where A = 6.1094, B= 17.625 and C= 243.04 are the coefficients of the August-Roche-Magnus equation as found here. Psat in hPa and T in °C | |||||||||||||||||||||||||
81 | ||||||||||||||||||||||||||
82 | ||||||||||||||||||||||||||
83 | ||||||||||||||||||||||||||
84 | ||||||||||||||||||||||||||
85 | ||||||||||||||||||||||||||
86 | ||||||||||||||||||||||||||
87 | ||||||||||||||||||||||||||
88 | ||||||||||||||||||||||||||
89 | ||||||||||||||||||||||||||
90 | ||||||||||||||||||||||||||
91 | ||||||||||||||||||||||||||
92 | ||||||||||||||||||||||||||
93 | ||||||||||||||||||||||||||
94 | ||||||||||||||||||||||||||
95 | ||||||||||||||||||||||||||
96 | ||||||||||||||||||||||||||
97 | ||||||||||||||||||||||||||
98 | ||||||||||||||||||||||||||
99 | ||||||||||||||||||||||||||
100 | ||||||||||||||||||||||||||