A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Rank | Title | Arxiv url | Citation | Publish date | |||||||||||||||||||||
2 | 1 | Deep Residual Learning for Image Recognition | http://arxiv.org/abs/1512.03385v1 | 16101 | 2015/12/10 | |||||||||||||||||||||
3 | 2 | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift | http://arxiv.org/abs/1502.03167v3 | 7490 | 2015/2/11 | |||||||||||||||||||||
4 | 3 | Caffe: Convolutional Architecture for Fast Feature Embedding | http://arxiv.org/abs/1408.5093v1 | 7352 | 2014/6/20 | |||||||||||||||||||||
5 | 4 | Sequence to Sequence Learning with Neural Networks | http://arxiv.org/abs/1409.3215v3 | 5048 | 2014/9/10 | |||||||||||||||||||||
6 | 5 | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems | http://arxiv.org/abs/1603.04467v2 | 4343 | 2016/3/14 | |||||||||||||||||||||
7 | 6 | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification | http://arxiv.org/abs/1502.01852v1 | 3284 | 2015/2/6 | |||||||||||||||||||||
8 | 7 | Representation Learning: A Review and New Perspectives | http://arxiv.org/abs/1206.5538v3 | 2915 | 2012/6/24 | |||||||||||||||||||||
9 | 8 | Deep Learning in Neural Networks: An Overview | http://arxiv.org/abs/1404.7828v4 | 2854 | 2014/4/30 | |||||||||||||||||||||
10 | 9 | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks | http://arxiv.org/abs/1511.06434v2 | 2728 | 2015/11/19 | |||||||||||||||||||||
11 | 10 | TensorFlow: A system for large-scale machine learning | http://arxiv.org/abs/1605.08695v2 | 2355 | 2016/5/27 | |||||||||||||||||||||
12 | 11 | FaceNet: A Unified Embedding for Face Recognition and Clustering | http://arxiv.org/abs/1503.03832v3 | 2054 | 2015/3/12 | |||||||||||||||||||||
13 | 12 | OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | http://arxiv.org/abs/1312.6229v4 | 2037 | 2013/12/21 | |||||||||||||||||||||
14 | 13 | DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition | http://arxiv.org/abs/1310.1531v1 | 2028 | 2013/10/6 | |||||||||||||||||||||
15 | 14 | Two-Stream Convolutional Networks for Action Recognition in Videos | http://arxiv.org/abs/1406.2199v2 | 1866 | 2014/6/9 | |||||||||||||||||||||
16 | 15 | Intriguing properties of neural networks | http://arxiv.org/abs/1312.6199v4 | 1710 | 2013/12/21 | |||||||||||||||||||||
17 | 16 | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling | http://arxiv.org/abs/1412.3555v1 | 1692 | 2014/12/11 | |||||||||||||||||||||
18 | 17 | DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs | http://arxiv.org/abs/1606.00915v2 | 1679 | 2016/6/2 | |||||||||||||||||||||
19 | 18 | How transferable are features in deep neural networks? | http://arxiv.org/abs/1411.1792v1 | 1670 | 2014/11/6 | |||||||||||||||||||||
20 | 19 | Playing Atari with Deep Reinforcement Learning | http://arxiv.org/abs/1312.5602v1 | 1581 | 2013/12/19 | |||||||||||||||||||||
21 | 20 | Identity Mappings in Deep Residual Networks | http://arxiv.org/abs/1603.05027v3 | 1494 | 2016/3/16 | |||||||||||||||||||||
22 | 21 | Multi-column Deep Neural Networks for Image Classification | http://arxiv.org/abs/1202.2745v1 | 1485 | 2012/2/13 | |||||||||||||||||||||
23 | 22 | Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding | http://arxiv.org/abs/1510.00149v5 | 1484 | 2015/10/1 | |||||||||||||||||||||
24 | 23 | Learning Spatiotemporal Features with 3D Convolutional Networks | http://arxiv.org/abs/1412.0767v4 | 1412 | 2014/12/2 | |||||||||||||||||||||
25 | 24 | SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation | http://arxiv.org/abs/1511.00561v3 | 1343 | 2015/11/2 | |||||||||||||||||||||
26 | 25 | Asynchronous Methods for Deep Reinforcement Learning | http://arxiv.org/abs/1602.01783v2 | 1283 | 2016/2/4 | |||||||||||||||||||||
27 | 26 | Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs | http://arxiv.org/abs/1412.7062v4 | 1281 | 2014/12/22 | |||||||||||||||||||||
28 | 27 | DeepWalk: Online Learning of Social Representations | http://arxiv.org/abs/1403.6652v2 | 1249 | 2014/3/26 | |||||||||||||||||||||
29 | 28 | Network In Network | http://arxiv.org/abs/1312.4400v3 | 1216 | 2013/12/16 | |||||||||||||||||||||
30 | 29 | The Cityscapes Dataset for Semantic Urban Scene Understanding | http://arxiv.org/abs/1604.01685v2 | 1121 | 2016/4/6 | |||||||||||||||||||||
31 | 30 | Deep Learning Face Attributes in the Wild | http://arxiv.org/abs/1411.7766v3 | 1112 | 2014/11/28 | |||||||||||||||||||||
32 | 31 | WaveNet: A Generative Model for Raw Audio | http://arxiv.org/abs/1609.03499v2 | 1061 | 2016/9/12 | |||||||||||||||||||||
33 | 32 | Image Super-Resolution Using Deep Convolutional Networks | http://arxiv.org/abs/1501.00092v3 | 1054 | 2014/12/31 | |||||||||||||||||||||
34 | 33 | Conditional Random Fields as Recurrent Neural Networks | http://arxiv.org/abs/1502.03240v3 | 1028 | 2015/2/11 | |||||||||||||||||||||
35 | 34 | Distilling the Knowledge in a Neural Network | http://arxiv.org/abs/1503.02531v1 | 999 | 2015/3/9 | |||||||||||||||||||||
36 | 35 | Theano: new features and speed improvements | http://arxiv.org/abs/1211.5590v1 | 973 | 2012/11/23 | |||||||||||||||||||||
37 | 36 | Feature Pyramid Networks for Object Detection | http://arxiv.org/abs/1612.03144v2 | 872 | 2016/12/9 | |||||||||||||||||||||
38 | 37 | Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) | http://arxiv.org/abs/1511.07289v5 | 844 | 2015/11/23 | |||||||||||||||||||||
39 | 38 | Character-level Convolutional Networks for Text Classification | http://arxiv.org/abs/1509.01626v3 | 840 | 2015/9/4 | |||||||||||||||||||||
40 | 39 | Accurate Image Super-Resolution Using Very Deep Convolutional Networks | http://arxiv.org/abs/1511.04587v2 | 825 | 2015/11/14 | |||||||||||||||||||||
41 | 40 | End-to-End Training of Deep Visuomotor Policies | http://arxiv.org/abs/1504.00702v5 | 809 | 2015/4/2 | |||||||||||||||||||||
42 | 41 | Wide Residual Networks | http://arxiv.org/abs/1605.07146v4 | 804 | 2016/5/23 | |||||||||||||||||||||
43 | 42 | Learning Deep Features for Discriminative Localization | http://arxiv.org/abs/1512.04150v1 | 800 | 2015/12/14 | |||||||||||||||||||||
44 | 43 | Teaching Machines to Read and Comprehend | http://arxiv.org/abs/1506.03340v3 | 789 | 2015/6/10 | |||||||||||||||||||||
45 | 44 | Deep Learning Face Representation by Joint Identification-Verification | http://arxiv.org/abs/1406.4773v1 | 772 | 2014/6/18 | |||||||||||||||||||||
46 | 45 | DeepPose: Human Pose Estimation via Deep Neural Networks | http://arxiv.org/abs/1312.4659v3 | 768 | 2013/12/17 | |||||||||||||||||||||
47 | 46 | DRAW: A Recurrent Neural Network For Image Generation | http://arxiv.org/abs/1502.04623v2 | 758 | 2015/2/16 | |||||||||||||||||||||
48 | 47 | Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning | http://arxiv.org/abs/1506.02142v6 | 716 | 2015/6/6 | |||||||||||||||||||||
49 | 48 | Semi-Supervised Learning with Deep Generative Models | http://arxiv.org/abs/1406.5298v2 | 704 | 2014/6/20 | |||||||||||||||||||||
50 | 49 | Understanding deep learning requires rethinking generalization | http://arxiv.org/abs/1611.03530v2 | 700 | 2016/11/10 | |||||||||||||||||||||
51 | 50 | Generative Adversarial Text to Image Synthesis | http://arxiv.org/abs/1605.05396v2 | 697 | 2016/5/17 | |||||||||||||||||||||
52 | 51 | 3D ShapeNets: A Deep Representation for Volumetric Shapes | http://arxiv.org/abs/1406.5670v3 | 693 | 2014/6/22 | |||||||||||||||||||||
53 | 52 | Xception: Deep Learning with Depthwise Separable Convolutions | http://arxiv.org/abs/1610.02357v3 | 688 | 2016/10/7 | |||||||||||||||||||||
54 | 53 | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation | http://arxiv.org/abs/1612.00593v2 | 676 | 2016/12/2 | |||||||||||||||||||||
55 | 54 | Deep Reinforcement Learning with Double Q-learning | http://arxiv.org/abs/1509.06461v3 | 674 | 2015/9/22 | |||||||||||||||||||||
56 | 55 | Deep Speech 2: End-to-End Speech Recognition in English and Mandarin | http://arxiv.org/abs/1512.02595v1 | 659 | 2015/12/8 | |||||||||||||||||||||
57 | 56 | Domain-Adversarial Training of Neural Networks | http://arxiv.org/abs/1505.07818v4 | 654 | 2015/5/28 | |||||||||||||||||||||
58 | 57 | BinaryConnect: Training Deep Neural Networks with binary weights during propagations | http://arxiv.org/abs/1511.00363v3 | 651 | 2015/11/2 | |||||||||||||||||||||
59 | 58 | Learning Transferable Features with Deep Adaptation Networks | http://arxiv.org/abs/1502.02791v2 | 607 | 2015/2/10 | |||||||||||||||||||||
60 | 59 | Unsupervised Domain Adaptation by Backpropagation | http://arxiv.org/abs/1409.7495v2 | 602 | 2014/9/26 | |||||||||||||||||||||
61 | 60 | MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems | http://arxiv.org/abs/1512.01274v1 | 601 | 2015/12/3 | |||||||||||||||||||||
62 | 61 | DeepFool: a simple and accurate method to fool deep neural networks | http://arxiv.org/abs/1511.04599v3 | 591 | 2015/11/14 | |||||||||||||||||||||
63 | 62 | Wasserstein GAN | http://arxiv.org/abs/1701.07875v3 | 588 | 2017/1/26 | |||||||||||||||||||||
64 | 63 | Pixel Recurrent Neural Networks | http://arxiv.org/abs/1601.06759v3 | 588 | 2016/1/25 | |||||||||||||||||||||
65 | 64 | Deep contextualized word representations | http://arxiv.org/abs/1802.05365v2 | 587 | 2018/2/15 | |||||||||||||||||||||
66 | 65 | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering | http://arxiv.org/abs/1606.09375v3 | 579 | 2016/6/30 | |||||||||||||||||||||
67 | 66 | Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning | http://arxiv.org/abs/1602.03409v1 | 567 | 2016/2/10 | |||||||||||||||||||||
68 | 67 | Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks | http://arxiv.org/abs/1511.04508v2 | 564 | 2015/11/14 | |||||||||||||||||||||
69 | 68 | Practical recommendations for gradient-based training of deep architectures | http://arxiv.org/abs/1206.5533v2 | 560 | 2012/6/24 | |||||||||||||||||||||
70 | 69 | Temporal Segment Networks: Towards Good Practices for Deep Action Recognition | http://arxiv.org/abs/1608.00859v1 | 556 | 2016/8/2 | |||||||||||||||||||||
71 | 70 | Deep multi-scale video prediction beyond mean square error | http://arxiv.org/abs/1511.05440v6 | 554 | 2015/11/17 | |||||||||||||||||||||
72 | 71 | Convolutional Sequence to Sequence Learning | http://arxiv.org/abs/1705.03122v3 | 552 | 2017/5/8 | |||||||||||||||||||||
73 | 72 | Deep Speech: Scaling up end-to-end speech recognition | http://arxiv.org/abs/1412.5567v2 | 538 | 2014/12/17 | |||||||||||||||||||||
74 | 73 | Towards Deep Learning Models Resistant to Adversarial Attacks | http://arxiv.org/abs/1706.06083v3 | 534 | 2017/6/19 | |||||||||||||||||||||
75 | 74 | Bag of Tricks for Efficient Text Classification | http://arxiv.org/abs/1607.01759v3 | 532 | 2016/7/6 | |||||||||||||||||||||
76 | 75 | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising | http://arxiv.org/abs/1608.03981v1 | 530 | 2016/8/13 | |||||||||||||||||||||
77 | 76 | The Limitations of Deep Learning in Adversarial Settings | http://arxiv.org/abs/1511.07528v1 | 530 | 2015/11/24 | |||||||||||||||||||||
78 | 77 | Matching Networks for One Shot Learning | http://arxiv.org/abs/1606.04080v2 | 529 | 2016/6/13 | |||||||||||||||||||||
79 | 78 | Learning Face Representation from Scratch | http://arxiv.org/abs/1411.7923v1 | 527 | 2014/11/28 | |||||||||||||||||||||
80 | 79 | A Survey on Deep Learning in Medical Image Analysis | http://arxiv.org/abs/1702.05747v2 | 520 | 2017/2/19 | |||||||||||||||||||||
81 | 80 | Understanding Neural Networks Through Deep Visualization | http://arxiv.org/abs/1506.06579v1 | 520 | 2015/6/22 | |||||||||||||||||||||
82 | 81 | Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network | http://arxiv.org/abs/1609.05158v2 | 516 | 2016/9/16 | |||||||||||||||||||||
83 | 82 | Deep Learning with Limited Numerical Precision | http://arxiv.org/abs/1502.02551v1 | 513 | 2015/2/9 | |||||||||||||||||||||
84 | 83 | cuDNN: Efficient Primitives for Deep Learning | http://arxiv.org/abs/1410.0759v3 | 509 | 2014/10/3 | |||||||||||||||||||||
85 | 84 | Deeply-Supervised Nets | http://arxiv.org/abs/1409.5185v2 | 509 | 2014/9/18 | |||||||||||||||||||||
86 | 85 | Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks | http://arxiv.org/abs/1604.02878v1 | 503 | 2016/4/11 | |||||||||||||||||||||
87 | 86 | From Captions to Visual Concepts and Back | http://arxiv.org/abs/1411.4952v3 | 501 | 2014/11/18 | |||||||||||||||||||||
88 | 87 | Do Deep Nets Really Need to be Deep? | http://arxiv.org/abs/1312.6184v7 | 496 | 2013/12/21 | |||||||||||||||||||||
89 | 88 | Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors | http://arxiv.org/abs/1505.04868v1 | 494 | 2015/5/19 | |||||||||||||||||||||
90 | 89 | A Theoretically Grounded Application of Dropout in Recurrent Neural Networks | http://arxiv.org/abs/1512.05287v5 | 487 | 2015/12/16 | |||||||||||||||||||||
91 | 90 | FitNets: Hints for Thin Deep Nets | http://arxiv.org/abs/1412.6550v4 | 483 | 2014/12/19 | |||||||||||||||||||||
92 | 91 | Spectral Networks and Locally Connected Networks on Graphs | http://arxiv.org/abs/1312.6203v3 | 477 | 2013/12/21 | |||||||||||||||||||||
93 | 92 | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks | http://arxiv.org/abs/1703.03400v3 | 467 | 2017/3/9 | |||||||||||||||||||||
94 | 93 | Identifying and attacking the saddle point problem in high-dimensional non-convex optimization | http://arxiv.org/abs/1406.2572v1 | 459 | 2014/6/10 | |||||||||||||||||||||
95 | 94 | Exact solutions to the nonlinear dynamics of learning in deep linear neural networks | http://arxiv.org/abs/1312.6120v3 | 455 | 2013/12/20 | |||||||||||||||||||||
96 | 95 | Prioritized Experience Replay | http://arxiv.org/abs/1511.05952v4 | 452 | 2015/11/18 | |||||||||||||||||||||
97 | 96 | Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN) | http://arxiv.org/abs/1412.6632v5 | 446 | 2014/12/20 | |||||||||||||||||||||
98 | 97 | Training Very Deep Networks | http://arxiv.org/abs/1507.06228v2 | 441 | 2015/7/22 | |||||||||||||||||||||
99 | 98 | Dueling Network Architectures for Deep Reinforcement Learning | http://arxiv.org/abs/1511.06581v3 | 441 | 2015/11/20 | |||||||||||||||||||||
100 | 99 | Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models | http://arxiv.org/abs/1411.2539v1 | 431 | 2014/11/10 |