ABCDEFGHIJKLMNOPQRSTUVWXYZ
1
2
NameFirst Author (or most notable)Link
3
An Overview of Statistical Learning TheoryVapnikhttp://math.arizona.edu/~hzhang/math574m/vapnik.pdf
4
A Theory of the LearnableValianthttp://web.mit.edu/6.435/www/Valiant84.pdf
5
An Introduction to Kernel-Based Learning AlgorithmsKlaus-Robert Müller
http://media.cs.tsinghua.edu.cn/~taopin/ML2005/intro2Kernel-basedLearn-TNN-2001.pdf
6
Ridge Regression: Biased Estimation for Nonorthogonal ProblemsArthur E. Hoerlhttp://math.arizona.edu/~hzhang/math574m/Read/Ridge.pdf
7
Random ForestsBreiman
https://www.cise.ufl.edu/~anand/fa11/Breiman_Random_Forests.pdf
8
Generalized Additive ModelsTrevor Hastie and Robert Tibshirani
http://gsp.humboldt.edu/olm_2015/Courses/GSP_570/Learning%20Modules/07%20GAMs/gam.pdf
9
The Mathematics of Learning: Dealing with DataTomaso Poggio
http://cbcl.mit.edu/projects/cbcl/publications/ps/notices-ams2003refs.pdf
10
Multivariate Adaptive Regression SplinesFriedman
ftp://gisportal.mt.gov/Maxell/Models/Predictive_Modeling_for_DSS_Lincoln_NE_121510/Modeling_Literature/Friedman_MARS.pdf
11
Stochastic Gradient BoostingFriedman
http://astro.temple.edu/~msobel/courses_files/StochasticBoosting(gradient).pdf
12
Regularization and Variable Selection via the Elastic NetHastiehttp://web.stanford.edu/~hastie/Papers/elasticnet.pdf
13
Regression Shrinkage and Selection via the LassoTibshirani
http://lib.cufe.edu.cn/upload_files/file/20140521/3_20140521_Regression%20shrinkage%20and%20selection%20via%20the%20lasso.pdf
14
Bagging PredictorsBreiman
http://lia.disi.unibo.it/Courses/AI/applicationsAI2005-06/Tesine/Leo%20Breiman-Bagging%20Predictors.pdf
15
Estimating Latent-Variable Graphical Models using Moments and LikelihoodsLianghttp://arun.chagantys.org/files/research/ChaLiang2014.pdf
16
Analysis of Thompson Sampling for the Multi-armed Bandit ProblemAgrawal
http://jmlr.org/proceedings/papers/v23/agrawal12/agrawal12.pdf
17
A Method of Moments for Mixture Models and Hidden Markov ModelsAnandkumar
http://www.jmlr.org/proceedings/papers/v23/anandkumar12/anandkumar12.pdf
18
Online convex optimization in the bandit setting: gradient descent without a gradientFlaxman
http://research.microsoft.com/en-us/um/people/adum/publications/2005-Online_Convex_Optimization_in_the_Bandit_Setting.pdf
19
Finite-time Analysis of the Multiarmed Bandit ProblemAuerhttp://homes.di.unimi.it/~cesabian/Pubblicazioni/ml-02.pdf
20
Unsupervised Learning of Noisy-Or Bayesian NetworksHalpernhttp://cs.nyu.edu/~dsontag/papers/HalpernSontag_uai13.pdf
21
Learning mixtures of spherical Gaussians: moment methods and spectral decompositions
Hsuhttp://arxiv.org/pdf/1206.5766.pdf
22
Asymptotically Efficient Adaptive Allocation RulesLaihttp://www.rci.rutgers.edu/~mnk/papers/Lai_robbins85.pdf
23
A Training Algorithm for Optimal Margin Classiers (SVM)Vapnikhttp://w.svms.org/training/BOGV92.pdf
24
Beating the Perils of Non-Convexity:
Guaranteed Training of Neural Networks using Tensor Methods
Janzaminhttp://arxiv.org/pdf/1506.08473.pdf
25
A Generalized Online Mirror Descent with Applications to Classification and Regression
Orabona
http://mercurio.srv.di.unimi.it/~cesabian/Pubblicazioni/genOmd.pdf
26
Online Learning and Online
Convex Optimization
Shai Shalev-Shwartzhttp://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf
27
Laplacian Eigenmaps for Dimensionality Reduction and Data RepresentationBelkin
https://www.cise.ufl.edu/~anand/fa11/Laplacian_Eigenmaps_preprint.pdf
28
Spatial Interaction and the Statistical Analysis of Lattice SystemsBesag
https://www.cise.ufl.edu/~anand/fa11/Besag_Spatial_interaction.pdf
29
Online Learning with Predictable SequencesRakhlinhttp://arxiv.org/pdf/1208.3728v2.pdf
30
Adaptivity and Optimism: An Improved Exponentiated Gradient AlgorithmLianghttp://cs.stanford.edu/~pliang/papers/eg-icml2014.pdf
31
Convolution Kernels on Discrete StructuresHaussler
https://cbse.soe.ucsc.edu/sites/default/files/convolutions.pdf
32
Markov Logic NetworksDomingoshttp://homes.cs.washington.edu/~pedrod/papers/mlj05.pdf
33
AdaBoostFreund and Schapire
http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/freund_schapire_adaboost_journal.pdf
34
A Short Introduction to BoostingYoav Freund Robert E. Schapire
http://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf
35
36
Explaining the Gibbs SamplerGeorge Casella
http://www.stat.ufl.edu/archived/casella/OlderPapers/ExpGibbs.pdf
37
MCMC original paper Metropolishttp://bayes.wustl.edu/Manual/EquationOfState.pdf
38
39
Maximum likelihood from incomplete data via the EM algorithmDempsterhttp://web.mit.edu/6.435/www/Dempster77.pdf
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100