A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | https://discord.gg/zr8HuTWFKc reading group 16:00 UTC thursdays | Alice's Rating 3~Outstanding 2~Spotlight 1~Promising | Official queue (alice approved) | ||||||||||||||||||||||||
2 | Tentative date | Title | Link | Abstract | Authors coming? | ||||||||||||||||||||||
3 | 10/16/2024 | 3 | Decomposing The Dark Matter of Sparse Autoencoders | https://openreview.net/forum?id=5IZfo98rqr | Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in ``dark matter''—unexplained variance in activations. In this work, we predict and verify that much of SAE dark matter can be linearly predicted from the activation vector. We exploit this fact to deconstruct dark matter into three top-level components: 1) unlearned linear features, 2) unlearned dense features, and 3) nonlinear errors introduced by the SAE. Through a scaling laws analysis, we estimate that nonlinear SAE errors stay constant as SAEs scale and serve as a lower bound of SAE performance on both an average and per-token level. We next empirically analyze the nonlinear SAE error term and show that it is not entirely a sparse sum of unlearned linear features, but that it is still responsible for some of the downstream reduction in cross entropy loss when SAE activations are inserted back into the model. Finally, we examine two methods to reduce nonlinear error: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE dictionaries, which leads to a larger reduction. | ✅ | |||||||||||||||||||||
4 | 10/24/2024 | 2.2 | The Persian Rug: solving toy models of superposition using large-scale symmetries | https://openreview.net/forum?id=rapXZIfwbX | We present a complete mechanistic description of the algorithm learned by a minimal non-linear sparse data autoencoder in the limit of large input dimension. The model, originally presented in \cite{elhage2022superposition}, compresses sparse data vectors through a linear layer and decompresses using another linear layer followed by a ReLU activation. We notice that when the data is permutation symmetric (no input feature is privileged) large models reliably learn an algorithm that is sensitive to individual weights only through their large-scale statistics. For these models, the loss function becomes analytically tractable. Using this understanding, we give explicit upper bounds on the loss, which show that the model is near-optimal among recently proposed architectures. In particular, changes to the elementwise activation function or the addition of gating can at best improve its performance by a constant factor. Finally, we forward-engineer a model with the requisite symmetries and show that its loss precisely matches that of the trained models. Unlike the trained model weights, the minimal randomness in the artificial weights results in miraculous fractal structures resembling a Persian rug, to which the algorithm is oblivious. Our work contributes to neural network interpretability by introducing techniques for understanding the structure of autoencoders. | ✅ | |||||||||||||||||||||
5 | visiting berkeley, might miss this 1 | ||||||||||||||||||||||||||
6 | 11/7/2024 | 2.6 | Differential learning kinetics govern the transition from memorization to generalization during in-context learning | https://openreview.net/forum?id=INyi7qUdjZ | Transformers exhibit in-context learning (ICL): the ability to use novel information presented in the context without additional weight updates. Recent work shows that ICL emerges when models are trained on a sufficiently diverse set of tasks and the transition from memorization to generalization is sharp with increasing task diversity. One interpretation is that a network's limited capacity to memorize favors generalization. Here, we examine the mechanistic underpinnings of this transition using a small transformer applied to a synthetic ICL task. Using theory and experiment, we show that the sub-circuits that memorize and generalize can be viewed as largely independent. The relative rates at which these sub-circuits learn explains the transition from memorization to generalization, rather than capacity constraints. We uncover a memorization scaling law, which determines the task diversity threshold at which the network generalizes. The theory quantitatively explains a variety of other ICL-related phenomena, including the long-tailed distribution of when ICL is acquired, the bimodal behavior of solutions close to the task diversity threshold, the influence of contextual and data distributional statistics on ICL, and the transient nature of ICL. | ik them, tbd if they're coming | |||||||||||||||||||||
7 | 11/14/2024 | 2 | Compute Optimal Inference and Provable Amortisation Gap in Sparse Autoencoders | https://openreview.net/forum?id=ghH6YYDs15 | A recent line of work has shown promise in using sparse autoencoders (SAEs) to uncover interpretable features in neural network representations. However, the simple linear-nonlinear encoding mechanism in SAEs limits their ability to perform accurate sparse inference. In this paper, we investigate sparse inference and learning in SAEs through the lens of sparse coding. Specifically, we show that SAEs perform amortised sparse inference with a computationally restricted encoder and, using compressed sensing theory, we prove that this mapping is inherently insufficient for accurate sparse inference, even in solvable cases. Building on this theory, we empirically explore conditions where more sophisticated sparse inference methods outperform traditional SAE encoders. Our key contribution is the decoupling of the encoding and decoding processes, which allows for a comparison of various sparse encoding strategies. We evaluate these strategies on two dimensions: alignment with true underlying sparse features and correct inference of sparse codes, while also accounting for computational costs during training and inference. Our results reveal that substantial performance gains can be achieved with minimal increases in compute cost. We demonstrate that this generalises to SAEs applied to large language models (LLMs), where advanced encoders achieve similar interpretability. This work opens new avenues for understanding neural network representations and offers important implications for improving the tools we use to analyse the activations of large language models. | ✅ | |||||||||||||||||||||
8 | 11/13/2024 | 2.4 | Gradient Routing: Masking Gradients to Localize Computation in Neural Networks | https://openreview.net/forum?id=z1mLNhWFyY | Neural networks are trained primarily based on their inputs and outputs, without regard for their internal mechanisms. These neglected mechanisms determine properties that are critical for safety, like (i) transparency; (ii) the absence of sensitive information or harmful capabilities; and (iii) reliable generalization of goals beyond the training distribution. To address this shortcoming, we introduce gradient routing, a training method that isolates capabilities to specific subregions of a neural network. Gradient routing applies data-dependent, weighted masks to gradients during backpropagation. These masks are supplied by the user in order to configure which parameters are updated by which data points. We show that gradient routing can be used to (1) learn representations which are partitioned in an interpretable way; (2) enable robust unlearning via ablation of a pre-specified network subregion; and (3) achieve scalable oversight of a reinforcement learner by localizing modules responsible for different behaviors. Throughout, we find that gradient routing localizes capabilities even when applied to a limited, ad-hoc subset of the data. We conclude that the approach holds promise for challenging, real-world applications where quality data are scarce. | ✅ | |||||||||||||||||||||
9 | 11/27/2024 | 2 | The Computational Complexity of Circuit Discovery for Inner Interpretability | https://openreview.net/forum?id=QogcGNXJVw | Many proposed applications of neural networks in machine learning, cognitive/brain science, and society hinge on the feasibility of inner interpretability via circuit discovery. This calls for empirical and theoretical explorations of viable algorithmic options. Despite advances in the design and testing of heuristics, there are concerns about their scalability and faithfulness at a time when we lack understanding of the complexity properties of the problems they are deployed to solve. To address this, we study circuit discovery with classical and parameterized computational complexity theory: (1) we describe a conceptual scaffolding to reason about circuit finding queries in terms of affordances for description, explanation, prediction and control; (2) we formalize a comprehensive set of queries that capture mechanistic explanation, and propose a formal framework for their analysis; (3) we use it to settle the complexity of many query variants and relaxations of practical interest on multi-layer perceptrons (part of, e.g., transformers). Our findings reveal a challenging complexity landscape. Many queries are intractable (NP-hard, \sigma_2^p-hard), remain fixed-parameter intractable (W[1]-hard) when constraining model/circuit features (e.g., depth), and are inapproximable under additive, multiplicative, and probabilistic approximation schemes. To navigate this landscape, we prove there exist transformations to tackle some of these hard problems (NP- vs. \sigma_2^p-complete) with better-understood heuristics, and prove the tractability (PTIME) or fixed-parameter tractability (FPT) of more modest queries which retain useful affordances. This framework allows us to understand the scope and limits of interpretability queries, explore viable options, and compare their resource demands among existing and future architectures. | idk them yet | |||||||||||||||||||||
10 | 11/20/2024 | 1.5 | Mechanistic Permutability: Match Features Across Layers | https://openreview.net/forum?id=MDvecs7EvO | Understanding how features evolve across layers in deep neural networks is a fundamental challenge in mechanistic interpretability, particularly due to polysemanticity and feature superposition. While Sparse Autoencoders (SAEs) have been used to extract interpretable features from individual layers, aligning these features across layers has remained an open problem. In this paper, we introduce SAE Match, a novel, data-free method for aligning SAE features across different layers of a neural network. Our approach involves matching features by minimizing the mean squared error between the folded parameters of SAEs, a technique that incorporates activation thresholds into the encoder and decoder weights to account for differences in feature scales. Through extensive experiments on the Gemma 2 language model, we demonstrate that our method effectively captures feature evolution across layers, improving feature matching quality. We also show that features persist over several layers and that our approach can approximate hidden states across layers. Our work advances the understanding of feature dynamics in neural networks and provides a new tool for mechanistic interpretability studies. | idk them yet | |||||||||||||||||||||
11 | 12/4/2024 | 1 | Forking Paths in Neural Text Generation | https://openreview.net/forum?id=8RCmNLeeXx | Estimating uncertainty in Large Language Models (LLMs) is important for properly evaluating LLMs, and ensuring safety for users. However, prior approaches to uncertainty estimation focus on the final answer in generated text, ignoring intermediate steps that might dramatically impact the outcome. We hypothesize that there exist key forking tokens, such that re-sampling the system at those specific tokens, but not others, leads to very different outcomes. To test this empirically, we develop a novel approach to representing uncertainty dynamics across individual tokens of text generation, and applying statistical models to test our hypothesis. Our approach is highly flexible: it can be applied to any dataset and any LLM, without fine tuning or accessing model weights. We use our method to analyze LLM responses on 7 different tasks across 4 domains, spanning a wide range of typical use cases. We find many examples of forking tokens, including surprising ones such as a space character instead of a colon, suggesting that LLMs are often just a single token away from saying something very different. | idk them yet | |||||||||||||||||||||
12 | |||||||||||||||||||||||||||
13 | |||||||||||||||||||||||||||
14 | |||||||||||||||||||||||||||
15 | |||||||||||||||||||||||||||
16 | |||||||||||||||||||||||||||
17 | |||||||||||||||||||||||||||
18 | |||||||||||||||||||||||||||
19 | |||||||||||||||||||||||||||
20 | |||||||||||||||||||||||||||
21 | |||||||||||||||||||||||||||
22 | |||||||||||||||||||||||||||
23 | |||||||||||||||||||||||||||
24 | |||||||||||||||||||||||||||
25 | |||||||||||||||||||||||||||
26 | |||||||||||||||||||||||||||
27 | |||||||||||||||||||||||||||
28 | |||||||||||||||||||||||||||
29 | |||||||||||||||||||||||||||
30 | |||||||||||||||||||||||||||
31 | |||||||||||||||||||||||||||
32 | |||||||||||||||||||||||||||
33 | |||||||||||||||||||||||||||
34 | |||||||||||||||||||||||||||
35 | |||||||||||||||||||||||||||
36 | |||||||||||||||||||||||||||
37 | |||||||||||||||||||||||||||
38 | |||||||||||||||||||||||||||
39 | |||||||||||||||||||||||||||
40 | |||||||||||||||||||||||||||
41 | |||||||||||||||||||||||||||
42 | |||||||||||||||||||||||||||
43 | |||||||||||||||||||||||||||
44 | |||||||||||||||||||||||||||
45 | |||||||||||||||||||||||||||
46 | |||||||||||||||||||||||||||
47 | |||||||||||||||||||||||||||
48 | |||||||||||||||||||||||||||
49 | |||||||||||||||||||||||||||
50 | |||||||||||||||||||||||||||
51 | |||||||||||||||||||||||||||
52 | |||||||||||||||||||||||||||
53 | |||||||||||||||||||||||||||
54 | |||||||||||||||||||||||||||
55 | |||||||||||||||||||||||||||
56 | |||||||||||||||||||||||||||
57 | |||||||||||||||||||||||||||
58 | |||||||||||||||||||||||||||
59 | |||||||||||||||||||||||||||
60 | |||||||||||||||||||||||||||
61 | |||||||||||||||||||||||||||
62 | |||||||||||||||||||||||||||
63 | |||||||||||||||||||||||||||
64 | |||||||||||||||||||||||||||
65 | |||||||||||||||||||||||||||
66 | |||||||||||||||||||||||||||
67 | |||||||||||||||||||||||||||
68 | |||||||||||||||||||||||||||
69 | |||||||||||||||||||||||||||
70 | |||||||||||||||||||||||||||
71 | |||||||||||||||||||||||||||
72 | |||||||||||||||||||||||||||
73 | |||||||||||||||||||||||||||
74 | |||||||||||||||||||||||||||
75 | |||||||||||||||||||||||||||
76 | |||||||||||||||||||||||||||
77 | |||||||||||||||||||||||||||
78 | |||||||||||||||||||||||||||
79 | |||||||||||||||||||||||||||
80 | |||||||||||||||||||||||||||
81 | |||||||||||||||||||||||||||
82 | |||||||||||||||||||||||||||
83 | |||||||||||||||||||||||||||
84 | |||||||||||||||||||||||||||
85 | |||||||||||||||||||||||||||
86 | |||||||||||||||||||||||||||
87 | |||||||||||||||||||||||||||
88 | |||||||||||||||||||||||||||
89 | |||||||||||||||||||||||||||
90 | |||||||||||||||||||||||||||
91 | |||||||||||||||||||||||||||
92 | |||||||||||||||||||||||||||
93 | |||||||||||||||||||||||||||
94 | |||||||||||||||||||||||||||
95 | |||||||||||||||||||||||||||
96 | |||||||||||||||||||||||||||
97 | |||||||||||||||||||||||||||
98 | |||||||||||||||||||||||||||
99 | |||||||||||||||||||||||||||
100 |