ArrayList

HashMap

Vector

Hashtable

HashSet

TreeSet

LinkedList

ArrayDeque

Stack
TreeMap

WeakHashMap

Arrays

Properties

CopyOnWriteArrayList

ConcurrentHashMap

ConcurrentSkipListMap

ConcurrentSkipListSet

CopyOnWriteArraySet

ConcurrentLinkedQueue

ConcurrentLinkedDeque

ArrayBlockingQueue

LinkedBlockingQueue

LinkedTransferQueue

PriorityBlockingQueue

LinkedBlockingDeque

SynchronousQueue

DelayQueue

Ordering

YES

NO
YES

NO

NO

YES

YES

YES

YES
YES

NO

YES

NO

YES

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Random
Access

YES

YES
YES

YES

YES

YES

NO

YES

NO
YES

YES

YES

YES

YES

YES

YES

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

Key-Value
Pairs

NO

YES
NO

YES

NO

NO

NO

NO

NO
YES

YES

NO

YES

NO

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

Allows
Duplicates

YES

NO
YES

NO

NO

NO

YES

YES

YES
NO

NO

YES

NO

YES

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

Allows Null
Values

YES

YES
YES

NO

YES

NO

YES

NO

YES
NO

YES

YES

NO

YES

NO

NO

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

Blocking Upper
Thread Safe Operations Bounds
Most Commonly Known Collections

NO NO NO
NO NO NO
YES NO NO
YES NO NO

Most Talked About Collections

NO NO NO
NO NO NO
NO NO NO
NO NO NO
YES NO NO
NO NO NO

Special Purpose Collections

NO NO NO
NO NO YES
YES NO NO

Thread Safe Collections

YES NO NO
YES NO NO
YES NO NO
YES NO NO
YES NO NO
YES NO NO
YES NO NO

Blocking Collections

YES YES YES
YES YES YES
YES YES YES
YES YES NO
YES YES YES
YES YES NO
YES YES NO
Source:

Usage Scenarios

* Default choice of List implementation

* To store a bunch of things

* Repetitions matters

* Insertion order matters

* Best implementation in case of huge lists which are read intensive
(elements are accessed more frequently than inserted deleted)
* Default choice of Map implementation

* Majorly used for simple in-memory caching purpose.

* Historical implementation of List

* A good choice for thread-safe implementation

* Similar to HashMap

* Do not allow null values or keys

* Entire map is locked for thread safety

* To store bunch of things

* A very nice alternative for ArrayList if

** Do not want repetitions

** Ordering does not matter

* To store bunch of things in sorted order

* A very nice alternative for ArrayList if

** Do not want repetitions

** Sorted order

* Sequential Access

* Faster adding and deleting of elements

* Slightly more memory than ArrayList

* Add/Remove elements from both ends of the queue

* Best alternative in case of huge lists which are more write intensive
(elements added / deleted are more frequent than reading elements)
* Random Access

* Faster searching and retrieval of elements

* Add/Remove elements from both ends of the queue

* Best alternative in case of huge lists which are more read intensive
* Similar to a Vector

* Last-In-First-Out implementation

* A very nice alternative for HashMap if sorted keys are important

* The keys that are not referenced will automatically become eligible for
garbage collection

* Usually used for advanced caching techniques to store huge data and
want to conserve memory

* A Utility class provided to manipulate arrays

** Searching

** Sorting

** Converting to other Collection types such as a List

* Properties are exactly same as the Hashtable

* Keys and Values are String

* Can be loaded from a input stream

* Usually used to store application properties and configurations

* A thread safe variant of ArrayList

* Best use for

** Small lists which are read intensive
** requires thread-safety

* A thread safe variant of Hashtable

* Best use for

** requires thread-safety

** Better performance at high load due to a better locking mechanism
* A thread safe variant of TreeMap

* Best use for

** requires thread-safety

* A thread safe variant of TreeSet

* Best use for

** Do not want repetitions

** Sorted order

** Requires thread-safety

* A thread-safe implementation of a Set
* Best use for

** Small lists which are read intensive
** requires thread-safety

** Do not want repetitions

* A thread-safe variant of PriorityQueue
* Best use for

** Smalll lists

** No random access

** requires thread-safety

"* A thread-safe variant of LinkedList

* Best use for

** Small lists

** No random access

** Insertions, retrieval on both sides of the queue
** requires thread-safety”

* Best use for Producer - Consumer type of scenarios with

** Lower capacity bound

** Predictable capacity

* Has a bounded buffer. Space would be allocated during object creation
* Best use for Producer - Consumer type of scenarios with

** Large capacity bound

** Unpredictable capacity

* Upper bound is optional

* Can be used in situations where the producers should wait for
consumer to receive elements. e.g. Message Passing

"* Best use for Producer - Consumer type of scenarios with

** Large capacity bound

** Unpredictable capacity

** Consumer needs elements in sorted order

* A Deque implementation of LinkedBlockingQueue

** Can add elements at both head and tail

* Both producer and consumer threads will have to wait for a handoff to
occur.

* If there is no consumer waiting. The element is not added to the
collection.

* Similar to a normal LinkedBlockingQueue

* Elements are implementations of Delayed interface

* Consumer will be able to get the element only when it's delay has
expired

http://www.janeve.me/articles/which-java-collection-to-use

