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Usage Scenarios

* Default choice of List implementation

* To store a bunch of things

* Repetitions matters

* Insertion order matters

* Best implementation in case of huge lists which are read intensive
(elements are accessed more frequently than inserted deleted)
* Default choice of Map implementation

* Majorly used for simple in-memory caching purpose.

* Historical implementation of List

* A good choice for thread-safe implementation

* Similar to HashMap

* Do not allow null values or keys

* Entire map is locked for thread safety

* To store bunch of things

* A very nice alternative for ArrayList if

** Do not want repetitions

** Ordering does not matter

* To store bunch of things in sorted order

* A very nice alternative for ArrayList if

** Do not want repetitions

** Sorted order

* Sequential Access

* Faster adding and deleting of elements

* Slightly more memory than ArrayList

* Add/Remove elements from both ends of the queue

* Best alternative in case of huge lists which are more write intensive
(elements added / deleted are more frequent than reading elements)
* Random Access

* Faster searching and retrieval of elements

* Add/Remove elements from both ends of the queue

* Best alternative in case of huge lists which are more read intensive
* Similar to a Vector

* Last-In-First-Out implementation

* A very nice alternative for HashMap if sorted keys are important

* The keys that are not referenced will automatically become eligible for
garbage collection

* Usually used for advanced caching techniques to store huge data and
want to conserve memory

* A Utility class provided to manipulate arrays

** Searching

** Sorting

** Converting to other Collection types such as a List

* Properties are exactly same as the Hashtable

* Keys and Values are String

* Can be loaded from a input stream

* Usually used to store application properties and configurations

* A thread safe variant of ArrayList

* Best use for

** Small lists which are read intensive
** requires thread-safety

* A thread safe variant of Hashtable

* Best use for

** requires thread-safety

** Better performance at high load due to a better locking mechanism
* A thread safe variant of TreeMap

* Best use for

** requires thread-safety

* A thread safe variant of TreeSet

* Best use for

** Do not want repetitions

** Sorted order

** Requires thread-safety

* A thread-safe implementation of a Set
* Best use for

** Small lists which are read intensive
** requires thread-safety

** Do not want repetitions

* A thread-safe variant of PriorityQueue
* Best use for

** Smalll lists

** No random access

** requires thread-safety

"* A thread-safe variant of LinkedList

* Best use for

** Small lists

** No random access

** Insertions, retrieval on both sides of the queue
** requires thread-safety”

* Best use for Producer - Consumer type of scenarios with

** Lower capacity bound

** Predictable capacity

* Has a bounded buffer. Space would be allocated during object creation
* Best use for Producer - Consumer type of scenarios with

** Large capacity bound

** Unpredictable capacity

* Upper bound is optional

* Can be used in situations where the producers should wait for
consumer to receive elements. e.g. Message Passing

"* Best use for Producer - Consumer type of scenarios with

** Large capacity bound

** Unpredictable capacity

** Consumer needs elements in sorted order

* A Deque implementation of LinkedBlockingQueue

** Can add elements at both head and tail

* Both producer and consumer threads will have to wait for a handoff to
occur.

* If there is no consumer waiting. The element is not added to the
collection.

* Similar to a normal LinkedBlockingQueue

* Elements are implementations of Delayed interface

* Consumer will be able to get the element only when it's delay has
expired

http://www.janeve.me/articles/which-java-collection-to-use



