AB
1
Convergence theorems for measurable functions and basic properties of Lebesgue spacesIwona Skrzypczak
2
Clarkson's inequalities and the dual space of L^pMarta Kamińska, Raj Narayan Dhara
3
Absolutely continuous and BV functions; ACL characterization of Sobolev spacesMarlena Śnitko, Marcin Wnuk
4
Distribution theoryAdam Prosiński, Paweł Józiak
5
Sobolev and Beppo-Levi spaces - relations, examples; integral representation for Sobolev functions on R^nAnna Kosiorek
6
Integral representation and Poincare inequality; domains with the cone propertyMichał Strzelecki
7
Difference quotient characterization of Sobolev spaces
8
Maximal function and H-L-W theorem; Riesz potentials and H-L-S theoremMateusz Kroczyński
9
Sobolev's embedding theorem and Gagliardo-Nirenberg's inequalitiesKarol Hajduk
10
Campanato's characterization of Hölder continuous functions and Morrey's theoremZofia Ambroży
11
Sobolev's embedding for p=n: Trudinger's theorem, BMO spaceKrzysztof Ciosmak
12
Fractional order Sobolev spacesMateusz Wasilewski
13
Trace theorems for Sobolev functionsAdrian Królak
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100