A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Category | Description | Comments | |||||||||||||||||||
2 | Transport Timetables | Transport | Timetables of major government operated (or commissioned) *national-level* public transport services (bus, train, etc). The focus here is on national level services (not those which operate *only* at a municipal or city level and which are not controlled or regulated by the national government) | This would be a little difficult to implement in my country considering there is different level of advance of transport service for different states. And national ministeries always identify with a succedding scheme even when they did not contribute directly to its success. | ||||||||||||||||||
3 | Government Budget | Finance | Government budget at a high level (e.g. spending by sector, department etc). Budgets are government plans for expenditure though often actual expenditure for past periods is reported (but usually only at a very high level) | |||||||||||||||||||
4 | Government Spending | Finance | Government spending at a detailed transactional level, that is at the level of month to month government expenditure including money spent on specific contracts or with specific vendors. | |||||||||||||||||||
5 | Election Results | Civic Information | Results by constituency / district for all major national electoral contests | |||||||||||||||||||
6 | Company Register | Civic Information | List of registered (limited liability) companies including name, unique identifier and additional information such as address, registered activities. Need NOT include detailed financial data such as balance sheet etc | manfredk: Plenty of national registers existing. I wonder how to capture international corporations? Shouldn't this be accompanied by an international company register? added a sheet "International Datasets" Emma: that is also very dependent on the country in question | ||||||||||||||||||
7 | National Map | Geodata | High level map at a scale of 1:250,000 or better (1cm = 2.5km) | |||||||||||||||||||
8 | National Statistics | Civic Information | Key national statistics on matters such as population and economy (GDP, unemployment etc) (aggregated / depersonalised) | |||||||||||||||||||
9 | Legislation | Legislative | All laws and statutes available online. (This item does **not** require that information on legislative behaviour e.g. voting records is available) | |||||||||||||||||||
10 | Postcodes / Zipcodes | Geodata | Database of postcodes / zipcodes and their corresponding geolocations | |||||||||||||||||||
11 | Emissions of pollutants | Environment | Location and amount all major sources of (man-made) pollutants (e.g factories) | |||||||||||||||||||
12 | Suggestions below this line | |||||||||||||||||||||
13 | Government procurement contracts | Finance | Contract awards including company information, description of work and amount | |||||||||||||||||||
14 | Crime statistics (nature, location, time of crime) | Civic Information | Disaggregated crime statistics. Disaggregated means individual crimes or as close to individual as is possible whilst still respecting privacy. | AStott: Need to make clear whether this is *individual* crimes or crime *statistics* - for instance individual crime data is needed to feed a "Chicago Crime Map"-style application | ||||||||||||||||||
15 | School statistics (number of pupils, educational outcomes, fees) | Civic Information | Disaggregated (i.e. school level) performance and informational statistics. | AStott: Are these educational statistics or data on individual schools. My vote for the latter! | ||||||||||||||||||
16 | Health statistics (surgeries, number of patients) | Civic Information | AStott: Location of hospitals/clinics very welcome, but these are not *statistics*. | |||||||||||||||||||
17 | Air quality | Environment | ||||||||||||||||||||
18 | Location of major transport terminals | Transport / Geodata | ||||||||||||||||||||
19 | National Map (detailed: 1:10,000 map) | Geodata | AS: National 1:10,000 is a bit demanding for many countries, particularly (but not only) developing countries, who do not have this data at all or only for selected urban areas. 1:50,000 may be a fairer point of comparison. | |||||||||||||||||||
20 | Elected or government officials | Civic information | The name, seat and contact information of each elected or government official | I think it is incredibly important in any country (and especially democracies) to know who the political leaders are and how to contact them. (I've named the dataset to include places like China, feel free to rename.) Given that national-level transport timetables don't exist in all countries (because not all countries have central government-operated transport), I would promote this dataset and demote the timetables. | ||||||||||||||||||
21 | CO2 emissions | Environment | Estimated CO2 emissions per year (if possibly broken down by major sectors of the economy) | very important and well aligned | ||||||||||||||||||
22 | Water Quality | Environment | ||||||||||||||||||||
23 | Roadworks (location etc) | Transport | ||||||||||||||||||||
24 | Access to Water and Sanitation | Civic Information | LN comment - how would we measure this? What data do you need? | |||||||||||||||||||
25 | Registered Company annual reports / returns (balance sheet, profit and loss etc) | Companies | ||||||||||||||||||||
26 | Public Facitilies Information | Civic Information | (location, amenities, shapefile, environmental makeup, ownership and contact info) | |||||||||||||||||||
27 | Modal Share | Transport | Percentage of travelers using a particular type of transportation or number of trips using said type | |||||||||||||||||||
28 | Location of public toilets | Transport | May not be the most useful dataset? | AStott: Widen this to "Points of (Civic) Interest" - including libraries, museums, galleries, public offices and so on as well as toilets. However this category more appropriate for city-level census as such POI data will often not be held at national level Emma: Segmentating this with waste deposit points, parking spaces, | ||||||||||||||||||
29 | Taxi stops | Transport | ||||||||||||||||||||
30 | bike trail | Transport | ||||||||||||||||||||
31 | Pharmacies | Health | ||||||||||||||||||||
32 | Health Centers | Health | ||||||||||||||||||||
33 | Historic/cultural sites | Geodata/culture | ||||||||||||||||||||
34 | Library resources | Research/academia | ||||||||||||||||||||
35 | Traffic and traffic signs | Transport | ||||||||||||||||||||
36 | NGOs, Non-Profits, Foundations, Humanitarian associations, Interest Groups | Civic information | ||||||||||||||||||||
37 | Power supply | Civic information | Amount of power supply in megawatt, amount consumed, generation/transmission/distribution companies, | |||||||||||||||||||
38 | Broadband Penetration | Civic Information | ||||||||||||||||||||
39 | ||||||||||||||||||||||
40 | ||||||||||||||||||||||
41 | ||||||||||||||||||||||
42 | ||||||||||||||||||||||
43 | ||||||||||||||||||||||
44 | ||||||||||||||||||||||
45 | ||||||||||||||||||||||
46 | ||||||||||||||||||||||
47 | ||||||||||||||||||||||
48 | ||||||||||||||||||||||
49 | ||||||||||||||||||||||
50 | ||||||||||||||||||||||
51 | ||||||||||||||||||||||
52 | ||||||||||||||||||||||
53 | ||||||||||||||||||||||
54 | ||||||||||||||||||||||
55 | ||||||||||||||||||||||
56 | ||||||||||||||||||||||
57 | ||||||||||||||||||||||
58 | ||||||||||||||||||||||
59 | ||||||||||||||||||||||
60 | ||||||||||||||||||||||
61 | ||||||||||||||||||||||
62 | ||||||||||||||||||||||
63 | ||||||||||||||||||||||
64 | ||||||||||||||||||||||
65 | ||||||||||||||||||||||
66 | ||||||||||||||||||||||
67 | ||||||||||||||||||||||
68 | ||||||||||||||||||||||
69 | ||||||||||||||||||||||
70 | ||||||||||||||||||||||
71 | ||||||||||||||||||||||
72 | ||||||||||||||||||||||
73 | ||||||||||||||||||||||
74 | ||||||||||||||||||||||
75 | ||||||||||||||||||||||
76 | ||||||||||||||||||||||
77 | ||||||||||||||||||||||
78 | ||||||||||||||||||||||
79 | ||||||||||||||||||||||
80 | ||||||||||||||||||||||
81 | ||||||||||||||||||||||
82 | ||||||||||||||||||||||
83 | ||||||||||||||||||||||
84 | ||||||||||||||||||||||
85 | ||||||||||||||||||||||
86 | ||||||||||||||||||||||
87 | ||||||||||||||||||||||
88 | ||||||||||||||||||||||
89 | ||||||||||||||||||||||
90 | ||||||||||||||||||||||
91 | ||||||||||||||||||||||
92 | ||||||||||||||||||||||
93 | ||||||||||||||||||||||
94 | ||||||||||||||||||||||
95 | ||||||||||||||||||||||
96 | ||||||||||||||||||||||
97 | ||||||||||||||||||||||
98 | ||||||||||||||||||||||
99 | ||||||||||||||||||||||
100 |