(The project)
MSc 2 (AR0851)
D2RP&O | Spring 2020
Group 3
Modular Acoustic Panels
For Off-Earth Habitats
2
Date: 02.05.2020
Course: 1:1 Interactive Architectural prototypes D2RP&O
Authors: Anagha Yoganand
Aditya Soman
Abhishek Holla
Inaka Sema
Isidoros Spanolios
Jiri Brakenhoff
Tutors: Henriette Bier
Arwin Hidding
Vera Laszlo
Robotic Building
Faculty of Architecture and Built Environment
3
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
De_Modul
Additive reinforcement layer
Milled structural layer
Additive acoustic layer
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
4
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Selected Fragment size 3m x 3m
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
5
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
1
2
3
4
5
1
2
3
4
5
2.1 Initial Concept
Schematic plan
2.2 Final Concept
Schematic plan
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
6
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
Layer 3 - Anchors placed in between the reinforcement lines
Layer 2- informed by the stress lines from structural analysis
Layer 1 - Holes drilled into the regolith where anchors are needed
Layer 1 and 2- Excavated and reinforced martian regolith treated with silicon layer and anchors inserted after excavation.
Layer 3 - Optimized acoustic layer
Figure 3: Initial design.
Figure 4: Final Design
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
2.1 Initial Concept
2.2 Final Concept
7
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
Figure 5: showing assumed loading conditions for structural analysis
Figure 6: Deformation analysis
Figure 7: Tension (blue) and compression (red) stress lines analysis
3.1 Structural Analysis of excavated Regolith layer
Analysis
(1)
Analysis
(2)
Analysis
(3)
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
8
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
1.Dense Reinforcement Mesh on
1mX1m Module
2.Scaling to Manufacturable Size (500mmX500mm)
3.Converting reinforcement lines to sintered surfaces
4.Smoothing and Refinement of the Edges
6.Further optimization for 3D Printing Compatibility
Figure 8: Design evolution of the regolith layer for production compatibility
3.2 Optimization of Regolith layer for production
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
9
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
Figure 8: showing the molecular structural formation of metal while sintering Source: Mueller, R. P. (2017)
Figure 9: JSC-1A sintered tiles that have been exposed to a rocket plume for a lander vehicle Source: Mueller, R. P. (2017)
Table 1: Major element composition of Martian regolith simulant JSC Mars-1A
Source: Wan, L., Wendner, R., & Cusatis, G. (2016)
4. Robotic manufacturing by utilizing In-situ materials
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
10
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
4.1 Structural connectors between the two layers
Figure 10: Section showing connector between layers
Figure 11: Section showing the joined assembly
11
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
4.1 Structural connectors between the two layers
Figure 12: Exploded axonometric view of the Anchor before assembly
Figure 13: Axo view of the Anchor when assembled
1. Metal sleeve is inserted in the regolith
2. Metal sleeve is inserted in the acoustic layer
3. Metal connector is anchored with the regolith metal sleeve
4. Metal sleeve in acoustic panel is anchored to the metal connector
12
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
5. Acoustic additive layer design development
Figure 14: The scripting logic used for form finding first iterations
Figure 15: Various forms selected to morph into the twisted box
Figure 16: Resulting fragment geometries
13
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
5. Acoustic additive layer design development
Mostly reflects and diffuses
Partially reflects and diffuses
Mostly absorbs
Partially reflects and diffuses
Mostly absorbs
Mostly reflects and diffuses
Partial absorption
Mostly reflects and diffuses
minimal absorption
Evenly absorbs, reflects and diffuses
Figure 17: Acoustic shoot simulation results of first set of iterations
14
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Spring 2020
5. Acoustic additive layer design development
Attractor point
Great sound absorption, sound gets trapped
Figure 18: First Iteration
Figure 18: Second Iteration
15
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
5. Acoustic additive layer design development
Geometry | Acoustic quality | Printability | Cleanability |
| | | |
| | | |
| | | |
| | | |
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Geometry | Acoustic quality | Printability | Cleanability |
| | | |
| | | |
| | | |
| | | |
16
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Scale and liquid ratio tests
Figure 24: Showing scale and liquid ratio tests
Figure 23: Acoustic layer form finding using Gray Scott model
5. Acoustic additive layer design development
17
Scaling the acoustic surface,
resulting in a more efficient printable layer
The right ratio between a printable surface and an acoustically functional panel
Flattening the surface to create a maximum of 45 degree angles
Scaling to Manufacturable Size (500mmX500mm)
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
8. Optimization of Acoustic layer for production
18
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
4
1
2
3
6. Robotic manufacturing approach
19
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
6.1 Rough excavation
The condition of the martian surface when the excavation is carried out by large excavators
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
20
6.1 Rough excavation
The condition of the martian surface when the excavation is carried out by large excavators
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
6.2 Smooth excavation
Robotic excavators shape the surface, removing material where is not needed based on the structural optimization pattern.
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
21
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
Robots can then stinter the surface, partially within the voids and completely at the top where reinforcing the surface against tensile and compressive forces.
6.3 Sintered reinforcements
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
22
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
3d Printed Metallic Sleeves are then inserted into the Martian surface.
6.4 Metal sleeves
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
23
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
The sleeves are now ready to receive the connectors.
6.5 Metal sleeves
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
24
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
A layer of silicon is applied which serves as the air and water tightness layer.
6.6 Silicon layer
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
25
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
3d Printed metal connectors are now ready to be inserted into the metal sleeves.
6.7 Metal connectors
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
26
The connectors snap into place and are now ready to receive the acoustic panel.
6.8 Metal connectors
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
27
The connectors snap into place and are now ready to receive the acoustic panel.
6.8 Metal connectors
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
6.9 Acoustic panel
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
28
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
6.10 Full assembly
The acoustic panel with the same metal sleeves are then clicked onto the connectors.
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
29
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema
6.10 Full assembly
The grooves on the acoustic layer can be used for running conduits for electricity or sensor actuator connectivity.
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
30
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
1.
2.
3.
01: EPS Block
With correct dimension
Is selected
02:First pass 16 layers
of Rough milling
Milling bits
1) First Pass: Rough shaping
2)Second pass: Smoothing on surface
3) Thirth pass: Defining contours
7. Robotic Prototyping_ Subtractive
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
31
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
7. Robotic Prototyping_ Subtractive
03: Layer by layer horizontal milling by the 1. Routing bit
04: Second pass with a rounded bit for smoothing .
05: Third pass for defining contours using a conical bit
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
32
MSc 2 (AR0851)
D2RP&O
Pitch 2.0
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020
7. Robotic Prototyping_ Subtractive
06: Additive layer printing 20%
06: Additive layer printing 50%
06: Additive layer printing 80%
MSc 2 (AR0851)
D2RP&O
The project
1. Selected fragment
2. Design scheme
3. Structural layer
4. Reinforcement layer
5. Additive layer
6. Manufacturing approach
7. Robotic prototyping
Spring 2020