1 of 32

(The project)

MSc 2 (AR0851)

D2RP&O | Spring 2020

Group 3

Modular Acoustic Panels

For Off-Earth Habitats

2 of 32

2

Date: 02.05.2020

Course: 1:1 Interactive Architectural prototypes D2RP&O

Authors: Anagha Yoganand

Aditya Soman

Abhishek Holla

Inaka Sema

Isidoros Spanolios

Jiri Brakenhoff

Tutors: Henriette Bier

Arwin Hidding

Vera Laszlo

Robotic Building

Faculty of Architecture and Built Environment

3 of 32

3

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

De_Modul

Additive reinforcement layer

Milled structural layer

Additive acoustic layer

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

4 of 32

4

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Selected Fragment size 3m x 3m

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

5 of 32

5

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

1

2

3

4

5

1

2

3

4

5

2.1 Initial Concept

Schematic plan

  • Martian Regolith Structural Layer - Structural form excavated in the Martian ground
  • Reinforcement Layer - To hold the regolith in place and reinforcing it where strength is needed
  • Intermediate Martian Concrete layer - to anchor into the regolith layer (1) and hold the innermost acoustic layer (5)
  • Silicone layer - To behave as an air barrier by sealing the inner pressurized environment from outside
  • Martian concrete acoustic Layer - Innermost layer that increases acoustic quality of the habitable areas

2.2 Final Concept

Schematic plan

  • Martian Regolith Structural Layer - Structural form excavated in the Martian ground
  • Sintered reinforcement Layer - To hold the regolith in place and reinforcing along the stress lines
  • Silicone layer - To behave as an air barrier by sealing the inner pressurized environment from outside
  • Martian concrete acoustic Layer - Innermost layer that increases acoustic quality of the habitable areas
  • Connector - Metal connector to anchor the acoustic layer (4) to the regolith layer (1)

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

6 of 32

6

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

Layer 3 - Anchors placed in between the reinforcement lines

Layer 2- informed by the stress lines from structural analysis

Layer 1 - Holes drilled into the regolith where anchors are needed

Layer 1 and 2- Excavated and reinforced martian regolith treated with silicon layer and anchors inserted after excavation.

Layer 3 - Optimized acoustic layer

Figure 3: Initial design.

Figure 4: Final Design

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

2.1 Initial Concept

2.2 Final Concept

7 of 32

7

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

Figure 5: showing assumed loading conditions for structural analysis

Figure 6: Deformation analysis

Figure 7: Tension (blue) and compression (red) stress lines analysis

3.1 Structural Analysis of excavated Regolith layer

Analysis

(1)

Analysis

(2)

Analysis

(3)

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

8 of 32

8

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

1.Dense Reinforcement Mesh on

1mX1m Module

2.Scaling to Manufacturable Size (500mmX500mm)

3.Converting reinforcement lines to sintered surfaces

4.Smoothing and Refinement of the Edges

6.Further optimization for 3D Printing Compatibility

Figure 8: Design evolution of the regolith layer for production compatibility

3.2 Optimization of Regolith layer for production

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

9 of 32

9

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

Figure 8: showing the molecular structural formation of metal while sintering Source: Mueller, R. P. (2017)

Figure 9: JSC-1A sintered tiles that have been exposed to a rocket plume for a lander vehicle Source: Mueller, R. P. (2017)

Table 1: Major element composition of Martian regolith simulant JSC Mars-1A

Source: Wan, L., Wendner, R., & Cusatis, G. (2016)

4. Robotic manufacturing by utilizing In-situ materials

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

10 of 32

10

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

4.1 Structural connectors between the two layers

Figure 10: Section showing connector between layers

Figure 11: Section showing the joined assembly

11 of 32

11

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

4.1 Structural connectors between the two layers

Figure 12: Exploded axonometric view of the Anchor before assembly

Figure 13: Axo view of the Anchor when assembled

1. Metal sleeve is inserted in the regolith

2. Metal sleeve is inserted in the acoustic layer

3. Metal connector is anchored with the regolith metal sleeve

4. Metal sleeve in acoustic panel is anchored to the metal connector

12 of 32

12

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

5. Acoustic additive layer design development

Figure 14: The scripting logic used for form finding first iterations

Figure 15: Various forms selected to morph into the twisted box

Figure 16: Resulting fragment geometries

13 of 32

13

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

5. Acoustic additive layer design development

Mostly reflects and diffuses

Partially reflects and diffuses

Mostly absorbs

Partially reflects and diffuses

Mostly absorbs

Mostly reflects and diffuses

Partial absorption

Mostly reflects and diffuses

minimal absorption

Evenly absorbs, reflects and diffuses

Figure 17: Acoustic shoot simulation results of first set of iterations

14 of 32

14

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Spring 2020

5. Acoustic additive layer design development

Attractor point

Great sound absorption, sound gets trapped

Figure 18: First Iteration

Figure 18: Second Iteration

15 of 32

15

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

5. Acoustic additive layer design development

Geometry

Acoustic quality

Printability

Cleanability

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Geometry

Acoustic quality

Printability

Cleanability

16 of 32

16

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Scale and liquid ratio tests

Figure 24: Showing scale and liquid ratio tests

Figure 23: Acoustic layer form finding using Gray Scott model

5. Acoustic additive layer design development

17 of 32

17

Scaling the acoustic surface,

resulting in a more efficient printable layer

The right ratio between a printable surface and an acoustically functional panel

Flattening the surface to create a maximum of 45 degree angles

Scaling to Manufacturable Size (500mmX500mm)

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

8. Optimization of Acoustic layer for production

18 of 32

18

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

  • Subtractive manufacturing- for excavation of Regolith layer
  • Sparse Laser Sintering - for adhesion of silicon on Regolith layer
  • Dense Laser Sintering - for reinforcement
  • Additive manufacturing using caulking gun principle - for Silicon Layer

4

1

2

3

6. Robotic manufacturing approach

19 of 32

19

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

6.1 Rough excavation

The condition of the martian surface when the excavation is carried out by large excavators

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

20 of 32

20

6.1 Rough excavation

The condition of the martian surface when the excavation is carried out by large excavators

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

6.2 Smooth excavation

Robotic excavators shape the surface, removing material where is not needed based on the structural optimization pattern.

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

21 of 32

21

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

Robots can then stinter the surface, partially within the voids and completely at the top where reinforcing the surface against tensile and compressive forces.

6.3 Sintered reinforcements

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

22 of 32

22

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

3d Printed Metallic Sleeves are then inserted into the Martian surface.

6.4 Metal sleeves

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

23 of 32

23

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

The sleeves are now ready to receive the connectors.

6.5 Metal sleeves

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

24 of 32

24

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

A layer of silicon is applied which serves as the air and water tightness layer.

6.6 Silicon layer

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

25 of 32

25

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

3d Printed metal connectors are now ready to be inserted into the metal sleeves.

6.7 Metal connectors

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

26 of 32

26

The connectors snap into place and are now ready to receive the acoustic panel.

6.8 Metal connectors

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

27 of 32

27

The connectors snap into place and are now ready to receive the acoustic panel.

6.8 Metal connectors

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

6.9 Acoustic panel

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

28 of 32

28

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

6.10 Full assembly

The acoustic panel with the same metal sleeves are then clicked onto the connectors.

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

29 of 32

29

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

Anagha Yoganand | Aditya Soman | Abhishek Holla | Jiri Brakenhoff | Isidoros Spanolios | Inaka Sema

6.10 Full assembly

The grooves on the acoustic layer can be used for running conduits for electricity or sensor actuator connectivity.

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

30 of 32

30

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

1.

2.

3.

01: EPS Block

With correct dimension

Is selected

02:First pass 16 layers

of Rough milling

Milling bits

1) First Pass: Rough shaping

2)Second pass: Smoothing on surface

3) Thirth pass: Defining contours

7. Robotic Prototyping_ Subtractive

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

31 of 32

31

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

7. Robotic Prototyping_ Subtractive

03: Layer by layer horizontal milling by the 1. Routing bit

04: Second pass with a rounded bit for smoothing .

05: Third pass for defining contours using a conical bit

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

32 of 32

32

MSc 2 (AR0851)

D2RP&O

Pitch 2.0

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020

7. Robotic Prototyping_ Subtractive

06: Additive layer printing 20%

06: Additive layer printing 50%

06: Additive layer printing 80%

MSc 2 (AR0851)

D2RP&O

The project

1. Selected fragment

2. Design scheme

3. Structural layer

4. Reinforcement layer

5. Additive layer

6. Manufacturing approach

7. Robotic prototyping

Spring 2020