Confidence intervals with Bootstrapping

a) Introduction

We use randomization to test claims

Randomization tests are best suited for modeling experiments where

- the treatment (explanatory variable) has been randomly assigned to the observational units
- and there is an attempt to answer a simple **yes/no** research question

Examples:

- Does this vaccine make it less likely that a person will get malaria?
- 2. Does drinking caffeine affect how quickly a person can tap their finger?
- 3. Can we predict whether candidate A will win the upcoming election?

Now we want to estimate population parameters

- Instead of testing a claim (yes/no),
- the goal now is to estimate the unknown value of a population parameter.

Examples:

- 1. How much less likely am I to get malaria if I get the vaccine?
- 2. How much faster (or slower) can a person tap their finger, on average, if they drink caffeine first?
- 3. What proportion of the vote will go to candidate A?

Bootstrapping is a simulation method

- The focus is on a single proportion
- Ideally, sample data was generated through random sampling from a population.

 our goal with bootstrapping is to understand variability of a statistic

Randomization vs bootstrap

Randomization tests:

 modeled how the statistic would change if the treatment had been allocated differently

The **bootstrap**

- will model how a statistic varies
 from one sample to another
 sample taken from the
 population.
- This will provide information about how different the statistic is from the parameter of interest.

Resources

The content of this lecture is mainly based on the excellent book (can be accessed for free)

- "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin (2021)

https://openintro-ims.netlifv.app/index.html