
Template by: Laurent Lessard

Dictionaries and Series
Python Module 5

Dictionaries

Dictionaries (dict) are similar to lists, except they are
indexed using strings rather than integers. Syntax:

Works for arbitrary data types:

2

ages = {'Alice': 19, 'Bob': 24}
ages['Bob']

24

scores = {'Alice': [75, 86, 92], 'Bob': [71, 95, 84]}
scores['Alice']

[75, 86, 92]

These are called (key, value) pairs.

More information: https://realpython.com/python-dicts/

https://realpython.com/python-dicts/

Structured data

Use simple and intuitive data structures when possible!
This allows use of libraries designed to handle this simple data

3

database = {'Alice': {'high_school': 'West HS',
 'college': 'UW',
 'status': 'sophomore'},
 'Bob': {'high_school': 'East HS',
 'college': 'UW',
 'status': 'alum'}}

database['Bob']['college']

UW

Indentation only matters
for the first line. You can
space out and align your
code like this to make it
more readable.

Creating a dictionary

● Empty dictionary: use D = dict() or D = {}.
● Creating from data:

○ Using the curly brace syntax:
D = { 'a':1, 'b':2, 'c':3 }

○ Using a list of lists (or a list of tuples, or a tuple of tuples, etc.):
D = dict([('a',1), ('b',2), ('c',3)])

○ Using an optional argument for each (key,value) pair:
D = dict(a=1, b=2, c=3)

○ Creating a blank dictionary and adding values later:
D = {}; D['a'] = 1 # and so on...

4

Tabular data example

State Population
(in millions)

Gross Domestic Product
(in millions of $)

CA 39.6 2.7

TX 28.7 1.7

NY 19.5 1.5

… … …

Each row: one observation
Each column: features of each observation

5

Many possible representations

● Row-first:
state_data = { 'CA': { 'pop':39.6, 'gdp':2.7 },
 'TX': { 'pop':28.7, 'gdp':1.7 },
 'NY': { 'pop':19.5, 'gdp':1.5 }}

● Column-first:
state_data = { 'pop': { 'CA':39.6, 'TX':28.7, 'NY':19.5 },
 'gdp': { 'CA':2.7, 'TX':1.7, 'NY':1.5 }}

● What is the standard way to represent tabular data?

6

Pandas is a Python package providing fast, flexible, and
expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive.

It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python.

7

Importing Pandas

● Pandas must be imported before it can be used
● Pandas functions are called using the dot operator

8

import pandas
pandas.merge(...)
pandas.concat(...)

● It’s standard to use the alias pd for pandas

import pandas as pd
pd.merge(...)
pd.concat(...)

You don’t have to call it
“pd”, but this name is an
agreed-upon convention.

Warning: Namespaces

● You can also import specific functions

9

● Or just import everything

Seems like the simplest
solution, but pandas is a
LARGE package with lots of
functions. Having the “pd.”
prefix is a helpful reminder
that the function you’re
calling is a pandas function.

from pandas import merge, concat
merge(...)
concat(...)

from pandas import *
merge(...)
concat(...)

The Zen of Python: https://www.python.org/dev/peps/pep-0020/

https://www.python.org/dev/peps/pep-0020/

Pandas Series

Series (pd.Series) are the building block of Pandas. They...

● …are very similar to dictionaries (dict) and lists (list).

● …provide efficient computation and storage

● …provide additional advanced functionality (more later!)

10

Pandas Series work best with flat data structures (e.g., lists of floats)
though they can be used with arbitrary data structures.

Series indexing

● Series can be indexed like a dict, like a list, or using dot:

11

import pandas as pd

population = { 'CA':39.6, 'TX':28.7, 'NY':19.5 }
s = pd.Series(population)

s['CA'] # returns 39.6
s.TX # returns 28.7
s[-1] # returns 19.5

state_names = ['CA', 'TX', 'NY']
pop_values = [39.6, 28.7, 19.5]
s = pd.Series(data=pop_values, index=state_names)

● data and index can be specified separately

Series operations

● Adding Series together automatically aligns indices

12

s1 = pd.Series({'CA':39.6,'TX':28.7,'NY':19.5})
s2 = pd.Series({'TX':10.1,'CA':10.2,'MA':11.6})
s1 + s2

CA 49.8
MA NaN
NY NaN
TX 38.8
dtype: float64

● This also works with * and other operations as well…

NaN stands for “not a number”.
Used by pandas to indicate missing
or unknown data entries.

dtype is the data type of the Series.

