Practical zk with Summa
Napoli - 25/5/2023

2

enrico.eth

Me

Zero knowledge circuit
engineer at Summa
Previously at Polygon
Hermez

Summa

- zk Proof of Solvency for CEXes

ethereum
foundation

£

Goal : Understand zk in practice

#1 Context on ZK #2 Context on something practical

#3 Apply zk to something
practical

#1 Context on ZK

Computation = set of rules

// Function that computes the sum of two numbers

function computeSum(x: number, y: number): number {

I 1 I I

// Rule 1: Compute the sum of 'x' and 'y' and return the result.

const sum: number = X + y;

return sum;

sum = X + y
return sum

sum

tx1

tx2

txn

-

for i in 1..n {

isValid(txi)
addToBlock(txi)

}

\\\\ return blockHash

— blockHash

Computational Integrity Guarantee

Given a computation which rules are known by

everyone, a prover wants to prove that the output

is the result of running the computation on certain
inputs

8 Ihll |I“l|
T
2
o
>
E > £
= 5
E =
=
x
L S =
P -
£ = S
: : v :
s > ® £
5 — —— —_——— af=-gt—— B | P M M s o Y R
g A e E z
o o o 3
=4 - c
= 3 A
- 9
5| 8 ¥
2 -
B |72}
> £ = 3
=] =
@ ~
(-
S
°

Traditional

Prover
Verifier
dynamic

How to achieve Computational Integrity Guarantee?

-> Verifier needs to rerun the computation with the same
input and check that the output matches

-=> Issue #1: verification time is linear to the
computation

-> Issue #2: everything is public!

Enters ZK

zk Circuit

tx1

\/

blockHash
tx2

txn

zk Circuit

\/

sum

zk Circuit

penultimate_level_left_hash

\/

sum

/K Prover
V e r 1 f 1 e r Alice ZK Program Bob

dynamic |

X,y >:
sum, i |
“hey, the result is {sumy}, this is the proof " |

| >

“l don't trust you, let me check it on my own”

verify(sum, m)

.«

“ok, now | trust you”

AT AT AT

How to achieve Computational Integrity Guarantee?

-> Verifier needs to run a verification algorithm on the
proof m

-> Solved Issue #1: verification time is constant no
matter the time it took to run the computation

-> Solved Issue #2: the prover can selectively decide what
to keep private and what to keep public

How to achieve Computational Integrity Guarantee?

-> Verifier needs to run a verification algorithm on the
proof m

-> Solved Issue #1: verification time is constant no
matter the time it took to run the computation

-> Solved Issue #2: the prover can selectively decide what
to keep private and what to keep public

> New issue #1: Generating a proof for a computation is
way slower than just running the computation

-> New issue #2: Writing zk program is not as easy as
writing a normal program

sum = X + Yy
return sum

#2 Context on Something Practical

Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific
moment in time

Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific
: . i —
moment in time l

Assets >= Liabilities

LIABILITIES

Deposits of the users
Denominated in ETH,
BTC, USDC ..

Do not live on-chain,
live in the CEX's DB

ASSETS

Cryptographic assets
(ETH, BTC, USDC..)
controlled by the CEX
Live on-chain

Should map (at least)
1:1 the deposits of the
users

LIABILITIES

Deposits of the users
Denominated in ETH,
BTC, USDC ..

Do not live on-chain,
live in the CEX's DB

Proof Of Solvency

- Cryptographic proof that a CEX is solvent at a specific
: . i —
moment in time l

Assets >= Liabilities

'

Users are confident
that they can withdraw
at any time

#3 Apply ZK to something practical

Summa: ZK Proof of Solvency

auditor-based proof of solvency

everything is
ok!

9.

Q

9.

Oj

auditorless proof of solvency
(naive approach)

everything is
ok!

OOO
C'O'D

auditorless proof of solvency
(ZK approach)

everything is
ok!

TT

C'OU

How?

Exchange

Ethereum

Proof of Assets

_Y__

Exchange

Ethereum

I I
I Proof of Assets I
| P
I

Build Merkle Sum Tree

e e

I

Merkle Sum Tree

e The entries are the
users’ data (=

hash: H(HLeft, 75, HRight, liabilities)
875)
sum: 950
: T | e Lives off-chain
hash: H(HLeft, 50, HRight, hash: H(HLeft, 75, HRight,
25) 800)
sum: 75 sum: 876 e Only the root-hash
T T gets published
on-chain
hash: H(bob, 50) hash: H(alice, 25) hash: H(carl, 75) hash: H(dave, 800)

sum: 50 sum: 25 sum:75 sum:800

A

username : bob
balance: 50

Exchange

Ethereum

Proof of Assets

Build Merkle Sum Tree

e o
l——

Merkle Tree Root

v _

Y __

Exchange

Ethereum

I
I
| Proof of Assets
1
I

Build Merkle Sum Tree

e e

I

| Merkle Tree Root

v _

| Gen Proofs

:‘

——_ Yy __

Exchange

Proof

Ethereum

I
I
| Proof of Assets
1
I

Build Merkle Sum Tree

e e

I

| Merkle Tree Root

v _

| Gen Proofs

———— Y

/k Proofs - Program Rules

Rule#1: The user (identified by its username) is included
in the Merkle Sum Tree with the correct balance

Rule#2: The hash of the Merkle Sum Tree matches the one
committed on chain

Rule#3: The sum of liabilities is Less Than the assets of
the exchange (as committed in step 1)

Rule#4: No sum overflow happened in the merkle sum tree
computation

userLeafH

///’

ash

merkleProof

rootHash

assetsSum

buildMST (userLeafHash,

computedRootBalance)

rootHash == computedRootHash

assetsSum >= rootBalance

N

merkleProof) == (computedRootHash,

~

J

/k Proofs - secrecy

= Other users information such as their balances and usernames
-> Total number of users
- Total amount of liabilities

4 N

buildMST (userLeafHash,
merkleProof) == (computedRootHash,
computedRootBalance)

rootHash == computedRootHash

Y

assetsSum >= rootBalance

N /

i

Ethereum

v _

Exchange
Alice
I I
I I
| | Proof of Assets
1
I R
| I Build Merkle Sum Tree
| l¢———
I I
| | Merkle Tree Root
I I
| | Gen Proofs
I I <
I I
| Proof |
<
| I
| Verify Proof |

!

—————— Y __

Proof Verification

F(m, username, balance, assetsSum, rootHash) =
yes/no

Conclusions

> How to think of zk apps: the mental model

@ Given a computation which rules are known by everyone, a prover wants to prove
that the output is the result of running the computation on certain inputs,
without revealing (part of) the input of such computation

- How to build zk apps

€ Building zk apps means writing circuits. Circom is the best tool to get started

Thank you!

me on github

