
Practical zk with Summa
Napoli - 25/5/2023

enrico.eth



Me

- Zero knowledge circuit 
engineer at Summa 

- Previously at Polygon 
Hermez



Summa

- zk Proof of Solvency for CEXes



Goal : Understand zk in practice 
 

#1 Context on ZK #2 Context on something practical 

#3 Apply zk to something 
practical



#1 Context on ZK



Computation = set of rules 
 



x

y

sum = x + y
return sum sum



tx1

blockHash
tx2

…

txn

for i in 1..n {

isValid(txi)
addToBlock(txi)

}

return blockHash



Given a computation which rules are known by 
everyone, a prover wants to prove that the output 
is the result of running the computation on certain 
inputs

Computational Integrity Guarantee



Traditional 
Prover 
Verifier 
dynamic
 



➔ Verifier needs to rerun the computation with the same 
input and check that the output matches 

➔ Issue #1: verification time is linear to the 
computation

➔ Issue #2: everything is public! 

How to achieve Computational Integrity Guarantee?
 



Enters ZK



tx1
blockHash

tx2

…

txn

for i in 1..n {

isValid(txi)
addToBlock(txi)

}

return blockHash

π

zk Circuit



x

y

sum = x + y
return sum

sum

π

zk Circuit



penultimate_level_left_hash

y

sum = x + y
return sum

sum

π

zk Circuit



ZK Prover 
Verifier 
dynamic
 



➔ Verifier needs to run a verification algorithm on the 
proof π 

➔ Solved Issue #1: verification time is constant no 
matter the time it took to run the computation

➔ Solved Issue #2: the prover can selectively decide what 
to keep private and what to keep public

How to achieve Computational Integrity Guarantee?
 



➔ Verifier needs to run a verification algorithm on the 
proof π 

➔ Solved Issue #1: verification time is constant no 
matter the time it took to run the computation

➔ Solved Issue #2: the prover can selectively decide what 
to keep private and what to keep public

➔ New issue #1: Generating a proof for a computation is 
way slower than just running the computation 

➔ New issue #2: Writing zk program is not as easy as 
writing a normal program

How to achieve Computational Integrity Guarantee?
 



x

y

sum = x + y
return sum

sum

π



#2 Context on Something Practical



Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time



Proof of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time

Assets >= Liabilities



LIABILITIES

- Deposits of the users
- Denominated in ETH, 

BTC, USDC …
- Do not live on-chain, 

live in the CEX’s DB



LIABILITIES

- Deposits of the users
- Denominated in ETH, 

BTC, USDC …
- Do not live on-chain, 

live in the CEX’s DB

ASSETS

- Cryptographic assets 
(ETH, BTC, USDC…) 
controlled by the CEX

- Live on-chain
- Should map (at least) 

1:1 the deposits of the 
users



Proof Of Solvency

- Cryptographic proof that a CEX is solvent at a specific 
moment in time

Assets >= Liabilities

Users are confident 
that they can withdraw 
at any time



#3 Apply ZK to something practical



Summa: ZK Proof of Solvency 



auditor-based proof of solvency

everything is 
ok!



auditorless proof of solvency
(naive approach)

everything is 
ok!



auditorless proof of solvency
(ZK approach)

π

everything is 
ok!



How?



ethereum



ethereum



Merkle Sum Tree
● The entries are the 

users’ data (= 
liabilities)

● Lives off-chain

● Only the root-hash 
gets published 
on-chain



ethereum



ethereum



ethereum



Zk Proofs - Program Rules

➔ Rule#1: The user (identified by its username) is included 
in the Merkle Sum Tree with the correct balance

➔ Rule#2: The hash of the Merkle Sum Tree matches the one 
committed on chain

➔ Rule#3: The sum of liabilities is Less Than the assets of 
the exchange (as committed in step 1)

➔ Rule#4: No sum overflow happened in the merkle sum tree 
computation



buildMST(userLeafHash, 
merkleProof) == (computedRootHash, 
computedRootBalance)

rootHash == computedRootHash

assetsSum >= rootBalance

userLeafH
ash

πmerkleProof

assetsSum

rootHash



Zk Proofs - secrecy

➔ Other users information such as their balances and usernames
➔ Total number of users
➔ Total amount of liabilities



buildMST(userLeafHash, 
merkleProof) == (computedRootHash, 
computedRootBalance)

rootHash == computedRootHash

assetsSum >= rootBalance

userLeafH
ash

πmerkleProof

assetsSum

rootHash



ethereum



Proof Verification

F(π, username, balance, assetsSum, rootHash) = 
yes/no



Conclusions

➔ How to think of zk apps: the mental model
◆ Given a computation which rules are known by everyone, a prover wants to prove 

that the output is the result of running the computation on certain inputs, 
without revealing (part of) the input of such computation

➔ How to build zk apps
◆ Building zk apps means writing circuits. Circom is the best tool to get started



Thank you!

me on github


