Are Parallel Algorithms Ready for
Prime Time

Guy Blelloch
Carnegie Mellon University

Are (sequential) Algorithms “Prime Time™?

First hit on google search “core computer science concepts”: & ¥ CARLCHEO:mn

T ch. Software. Computer Tips.

40 Key Computer Science Concepts Explained in Layman’s Terms

Core Concept #1 - Algorithms and Data Structures
1.1 Big O Notation
1.2 Sorting Algorithms
1.3 Recursion ...
1.4 Big Data
1.5 Data Structures

Core Concept #2 - Artificial Intelligence
2.1 Greedy Algorithms

Are (sequential) Algorithms “Prime Time™?

Most first year undergraduate CS curriculums cover:
1. Sorting (insertion, quick, merge, heap?)
2. Big-O, some introduction to recurrences
3. Binary trees, probably BFS
4.

Most programming languages have widely used libraries of algorithms:
1. STLin C++
2. Java collections
3. Python, the kitchen sink
4,
Used by just about all programmers

Why are algorithms so successful?

Broadly applicable

Support general techniques/abstractions
Simple and elegant

Are easy to program

Rely on a simple cost model

Lead to interesting theoretical questions
Lead to good efficiency in practice

Why are algorithms so successful?

Algorithms

The random access machine (RAM) s Analysis

A great bridging model

void DFS(int v, graph G, bool* visited) {
visited[v] = true;
visit(v);
for (int u : G.adj[v])
if (visited[u]) DFS(u, G, visited);

Programming
Languages

Why are algorithms so successful?

Algorithms

The random access machine (RAM) s Analysis

A great bridging model

Not perfect:

- E.g. caches
But there are natural
extensions to handle that
when needed

Programming
Languages

Can we get the same “ecosystem” for parallelism?

Broadly applicable
general techniques

Simple and elegant

Easy to program

Simple cost model
Interesting theory

Good efficiency in practice

Algorithms
+ Analysis

Programming
Languages

E.g. well suited to teach in first year UG classes instead of sequential algorithms

A brief history of parallel algorithms

The 60s and 70s: early exploration

Network models (hypercube, butterfly, meshes, etc.), e.g. Batcher sort
e Too low level, not portable

Circuit models (Nick’s class, the NC-hierarchy, P-complete problems)
e Not programmable
e NC ignores polynomial factors in work L><l L><l
e Some good parallel algorithms have polynomial dept \%E/

|

PRAM program

A brief history of parallel algorithms

The 80s: The decade of the PRAM + + +

100s Of papers on the tOpIC shared memory

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour
trees, scan, cascading, contraction

Very little code:
e Overly synchronous
e Not well suited for nested parallelism (e.g. parallel D&C)

e Ignores communication cost

PRAM program

A brief history of parallel algorithms

The 80s: The decade of the PRAM + + +

shared memory

100s of papers on the topic

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour
trees, scan, cascading, contraction

Real problem is assuming a fixed number of synchronous processors
e User needs to write their own “scheduler”

And parallel hardware

Thinking
Machines
CM-2
(1987)

Thinking
Machines
CM-5
(1991)

Cray
XMP
(1982)

Catech/Intel Intel | Maspar
Cosmic cube Paragon L MP-2
(1984) (1993) (1992)

First Parallel Desktop : The SugarCube (1987)

' _ﬂgyétems‘apnsists ofthe CubeW
al, and Cube (top left) , which
ier of 4 or ! ing nodes.

Prime time?

Although many excellent ideas:

Million of $s each (mostly government labs)
Programming was very difficult

SIMD/vector and/or distributed memory made it hard
Communication was inadequate

Theory (PRAM) did not match practice

A brief history of parallel algorithms @:;“

N /7 N 7/
| S N |

\ 7/

The 90s: The PRAM “gone afoul”

The log* failure: focus on non-robust details of the PRAM

Various more “realistic” models:
e BSP, LogP : account for communication, but too synchronous, and pain
to design algorithms for
gap : number of instructions per word transferred
e asynchronous PRAM : suffer some of the same problems as PRAM

Nested parallel (fork/join, work-depth model) : will come back to

The High Cost of Low Communication (1995)

Ve

A brief history of parallel algorithms

The 00s+: special purpose

ED =00 EI:I ED ID EI:I
() [

GPU Mode|s: (818} (i8] |m(a) [mje BBEE
e To many details for a general model

Map-reduce models, e.g. MPC.:
e Bulk synchronous is limiting
e Not shown to lead to efficient algorithms in practice

Domain specific models
e Not general

Can we get the same “ecosystem” for parallelism

Broadly applicable
general techniques

Simple and elegant

Easy to program

Simple cost model
Interesting theory

Good efficiency in practice

Algorithms
+ Analysis

Programming
Languages

Can we get the same “ecosystem” for parallelism

Broadly applicable
general techniques

Simple and elegant

Easy to program

Simple cost model
Interesting theory

Good efficiency in practice

Algorithms
+ Analysis

Programming
Languages

Nested Parallel Model

Nested fork-join parallelism
e Binary or multiway forking (only affects span)
e Costs in terms of Work and Span (Depth)
e Compose work with sum, Span with max

quicksort(A) =
If (|JA|] < 2) return A
p = pick random pivot from A W(n) = O(n log n) whp
L=[xinA|x<p] S(n) = O(log? n) whp

R=[xinA|x>p]
(L', R’) = (quicksort(L) || quicksort(R))
return L ++ [p] ++ R

Desiderata

Broadly Applicable

e Hardly know a clean parallel algorithm that does not fit the model

General Techniques

e EXxisting: Divide-and-conquer, dynamic programming, balanced trees, ..
e Newish: Contraction, random-mate, pointer doubling, scan (prefix sums)

Interesting Theory

e Of course

Desiderada

Lead to good efficiency in practice?

Do multicore’s work for parallelism?

Mean = 29.8
speedup on 32 cores 32 core sir_mgle chip (hyperthreaded)
50.0 Intel Saphire Rapids
40.0

30.0

speedup

20.0

10.0

0.0
map reduce gather scatter merge sort BFS pagerank hash map knn geometric mean

32 core/64 hyperthread single chip
intel processor (Ice Lake)

Mean = 29.8

Examples

Parlayl

speedup on 32 cores
60.0

1UN0J plom
1unoo a|bueln
93l} Xi4ns
Kelre xiyns
9aJ) Buluueds
19A02 188
ueos

yos a|dwes
aonpal

aoel} Ael
abuel

diey uiqel
yosyainb
[INuaInb
1egejal ysnd
sawud
yuelabed
Apoq u

1SN

Upa wnuwiuiw
yosabliaw
ssow
|Jewixew
|Jewixew
1819WeIp MO|
1sabuo|
1s9buo|
Ul

osse|
1se|jews Uy
al4nys ynuy
slLow ynuy
eqnsjeley
1saleau
9al] uewyny
dew ysey
10]02 ydelb
usypey}

(ejo1) 1oy

11 Ja1noy ise}
Keunejep
93l] uoIsioap
1Unod 8|2ko
a1} ueisaled
i~ payexong
ppe juIbiq
S4d
sauaamiaq
pio} uew|aq
leaul| pz

Graph algorithms results (SPAA18)

Problem

| (1) | (72h) | (SU) | Alg. | Model | Work

Depth

Breadth-First Search (BFS)
Integral-Weight SSSP (weighted BFS)
General-Weight SSSP (Bellman-Ford)
Single-Source Widest Path (Bellman-Ford)
Single-Source Betweenness Centrality (BC)
O(k)-Spanner

Low-Diameter Decomposition (LDD)
Connectivity

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)*
Minimum Spanning Forest (MSF)
Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

Approximate Set Cover

k-core

Approximate Densest Subgraph

Triangle Counting (TC)

PageRank Iteration

576
3770
4010
3210
2260
2390

980
1640
2420
9860
8130
9520
2190
7150
8920
5320
8515
3780

973

8.44
58.1
59.4
48.4
37.1
36.5
16.6
25.0
35.8
165
185
187
32.2
108
158
90.4
184
51.4
1168
13.1

68
64
67
66
60
65
59
65
67
59
43
50
68
66
56
58
46
73

74

[42]
(38]
(38]
(30]
(89]
[90]
[117]
[117]
[125]
(23]
[130]
[22]
[22]
[59]
[25]
[42]
[13]
[119]
(31]

TS
PW
PW
PW
FA
TS
TS
TS
TS
FA
PW
PW
FA
PW
FA
PW
FA
FA

FA

O(m)

O(m) expected
O(diam(G)m)
O(diam(G)m)
O(m)

O(m)

O(m)

O(m) expected
O(m) expected
O(m) expected
O(mlog n) expected
O(mlogn)
O(m) expected
O(m) expected
O(m)

O(m) expected
O(m) expected
O(m)

O(m3/2)
O(n+ m)

O(diam(G) log n)
O(diam(G) log n) w.h.p."
O(diam(G) log n)
O(diam(G) log n)
O(diam(G) log n)

O(k log n) w.h.p.

O(log? n) w.h.p.

O(log® n) w.h.p.

O(log® n) w.h.p.
O(max(diam(G) log n, log® n)) w.h.p.
O(diam(G) log n) w.h.p.
O(log? n)

O(log? n) w.h.p.

O(log® m/loglog m) w.h.p.
O(logn + LlogA)

O(log® n) w.h.p.

O(plog n) wh.p.

O(log? n)

O(log n)

O(log n)

Why is the performance good:

Memory Bandwidth (all machines with 2.5MHz processors)
Recall: gap = number of 8-byte words loaded/processor/cycle

Intel Haswell (2016), 18 core (1 chip), 80GB/sec: gap = 4.5
Cascade Lake (2018), 28 core (1 chip), 140GB/sec: gap = 4

Intel Ice Lake (2021), 32 core (1 chip), 200GB/sec: gap = 3.2

Intel Saphire Rapids (2023), 32 core (1 chip), 300GB/sec: gap = 2.2

Speedup of Reduce from: 9x -> 12x -> 15x -> 22x

intel.

XeON

MAX SERIES

First & only x86
CPU with HBM

Choose the right me niguration for your needs \

Memory Modes
| X =
‘ | ~ ' HBM Only HBM Flat HBM Caching
Bootable from HBM 2 Memory Regions HBM as cache for DDR
64GB N]TB/S >] GB No code change SW Optimization Needed = No code change

HBM2e Memory HBM
4 stacks of 16GB Bandwidth per Core

Desiderata

Simple and elegant and Easy to program?

e BFS
e Merging
e Union of two balanced BSTs

Breadth First Search

void BFS(int start, sequence<sequence<int>& G) {
auto visited = tabulate<std::atomic<bool>>(G.size(), [&] (long i) {
return (i==start) ? true : false; });

sequence<int> frontier(1,start); W(n,m) = O(m)
while (frontier.size() > 0) { S(n,m) = O(d log n)
auto ngh = flatten(map(frontier, [&] (vertex u) { n vertices, m edges, diameter d

return G[u];}));

frontier = filter(ngh, [&] (int v) {
return (lvisited[v]) && visited[v].CAS(false, true);});
}}

Merging (Divide and Conquer) W(n) = O(n)
S(n) = O(log? n)

void merge(Slice A, Slice B, Slice R, F f) {
long nA = A.size(); long nB = B.size(); long nR = nA + nB;
if (NR < Threshold) std::merge(A.begin(), A.end(), B.begin(), B.end(), R.begin(), f);
else if (nA == 0) copy(B, R);
else if (nB == 0) copy(A, R); A | |
else { .
long mA = nA/ 2: - ﬂ)lnary search |
long mB = std::lower_bound(B.begin(), B.end(), A[mA], f);
long MR = mA + mB;
par_do([&]() { merge(A.cut(0, mA), B.cut(0, mB), R.cut(0, mR), f);},
[&]() { merge(A.cut(mA, nA), B.cut(mB, nB), R.cut(mR, nR), f);}};

1

Union of two balanced BSTs (e.g. Red-Black)

node* union(node* A, node* B) {
if (1A) return B;
if ('B) return A;
auto [leftA, rightA] = split(A, B->key);
auto [left, right] = par_do_pair(
[&] {return union(leftA, B->Ic);}
[&] {return union(rightA, B->rc);});
return join(left, B->key, right);

}

Many other examples:

https://github.com/cmuparlay/parlaylib, in examples directory (search parlaylib)

2d linear program.h find if.h longest common prefix.h radix tree.h

3d range.h flatten.h longest repeated substring.h range min.h

bellman ford.h graph color.h low diameter decomposition.h ray trace.h
betweenness centrality.h hash map.h maximal independent set.h rectangle intersectio
BFS.h huffman tree.h maximal matching.h reduce.h

BFS ligra.h karatsuba.h mcss.h samplesort.h

bigint add.h kcore.h mergesort.h scan.h

box kdtree.h kmeans pp.h minimum edit distance.h set cover.h

bucketed dijkstra.h knn.h nbody fmm.h spanning tree.h
cartesian tree.h knuth morris pratt.h oct tree.h spectral separator.h
cycle count.h knuth shuffle.h pagerank.h suffix array.h
decision tree c45.h kruskal.h primes.h suffix tree.h
delaunay.h kth smallest.h push relabel max flow.h tokens.h

fast fourier transform.h lasso regression.h quickhull.h triangle count.h
filter.h le list.h quicksort.h word counts.h

filter kruskal.h linefit.h rabin karp.h

https://github.com/cmuparlay/parlaylib

Conclusion:
Are Parallel Algorithms ready for prime time?

Broadly applicable
General techniques
Simple and elegant

Easy to program

Simple cost model
Interesting theory

Good efficiency in practice
Easy to debug

Yes for multicores.

Not yet for other models of parallelism
(GPUs, MPC, PIM, Vector Units, ...)

This is OK. Good to separate the part
we can move to e.g. an UG curriculum.

Purpose of asymptotic (big-O) analysis:

+ yes

1. Abstraction : avoid details

2. Guidance : towards a good algorithm

3. Scalability : how will cost grow with size

4. Justify : algorithms, data structures and techniques

- no
1. Runtime : how fast will it run on my x247mpq-7rl-v3

2. Fine Tuning : lets get the last 10%

3. Fine Details : lets strip a log* n off of an n? bound (my opinion)

‘ Memory: upto 1TB

What about locality T —wad

24 MB L3 24 MB

<« > <« >
‘8ofthese| |8 ofthese’

Achievable: 256 KB | | 256 KB Lg‘zsexs 256 KB

There is an inherent “sequential” left-to-right order. = — =

|32k8| [32kB| L1 [32kB| [32kB|
I I I

P) ®) P) P)

Analyze cache cost in this order.
E.g. block recursive matrix multiply has same cost as sequentially

This leads to (provably) good behavior when simulated on various parallel cache
hierarchies with shared and distributed caches, e.g.:

e Shared caches : use priority first scheduling

e Distributed Caches : use work-stealing

e Hierarchical caches : use space-bounded schedulers

Can we get the same “ecosystem” for parallelism

The binary-forking model
A great bridging model, at least for
some class of machines.

Algorithms
+ Analysis

Binary
Forking
Model

Machines
shared address
space

Programming
Languages

Quicksort

void quicksort(slice In, slice Out, Comp f, bool inplace) {
long n = In.size();

if (n < Threshold) {
std::sort(In.begin(), In.end(), f);
if (linplace) copy(In, Out);

W(n) = O(n log n) w.h.p
S(n) = O(log? n) w.h.p.

} else {
double p = In[n/2];
auto sizes = bucket_by(In, Out, [] (auto k) {return f(k,p) ? 0 : f(p,k) ? 2 : 1;}, 3);

long | = sizes[0]; long h = sizes[0] + sizes[1];

par_do([&]() {quicksort(Out.cut(0, I), In.cut(0, I), f, linplace);}, \
[&]() {quicksort(Out.cut(h, n), In.cut(h, n), f, linplace);});

if (inplace) copy(Out.cut(l,h), In.cut(l,h)); Partition into <, =, >

1}

Education

We have been teaching this at CMU for almost 10 years now (started in 2012).

All our sophomores take a course “parallel and sequential data structures and
algorithms” that teaches in this style.

Teach all the standard ideas + parallelism: D&C, DP, big-O, recurrences, DFS,
BFS, Dijkstra’s, ...

Parallelism is not hard for them.

What about other types of machines?

GPUs : becoming more like CPUs (perhaps they will become the same)

Distributed memory: seems hard to get General purpose clean model, but having
a shared address space should be fine. Race free programs do not need cache
coherence (flush when needed).

Processing in memory: some recent work

Conclusions

Question: can parallel algorithms/analysis replace sequential algorithms/analysis,
or ideally be part of the same “ecosystem™?

Binary forking model is a step towards the goal:
e Integrates well with sequential algorithms
e Can incorporate locality
e Simple code, and fast implementations

But some caveats
e Does not cover all machines
e Getting community buy in to parallelism is hard

Can we get the same “ecosystem” for parallelism

Measures of success:

Every undergraduate data structures and algorithms course covers parallel
algorithms throughout.

All CS professionals know a collection of parallel techniques and algorithms
All mainstream languages properly support parallelism

Most library implementations are parallel

Algorithms remain simple

Parallel machine architecture helps simplify algorithm design

Word Counts W(n) = O(js|)
S(n) = O(ls| ")

auto wordCounts(charseq const &s) {
auto str = parlay::map(s, [] (char c) {return std::isalpha(c) ? ¢ : 0;}
auto words = parlay::tokens(str, [] (char c) {return c == 0;});
return parlay::count_by_key(words);

}

Declares whitespace

Breadth First Search

vSequence BFS(vertex start, const Graph &G) {
size_t n = G.numVertices();

vSequence parent(n, -1); W(n,m) = O(m)
parent[start] = start; S(n,m) = O(d log n)
auto frontier = ligra::vertex_subset(start); n vertices, m edges, diameter d

while (frontier.size() > 0)

frontier = ligra::edge_map(frontier, \ y e
[&] (vID v) { return parent[v] == - aps over out-eages of eac

vertex in the frontier
[&] (VID u, vID v) { return CAS(parent[v], -1, u);});
return parent;

}

Graph Connectivity

W(n,m) = O(m) whp

vSequence Connectivity(Graph& G) { S(n,m) = O(log® n) whp
size tn=G.n; n vertices, m edges, diameter d
vSequence clusters = LDD(G);
long num_ clusters = Relabellds(clusters);
auto [G_clusters, flags, mapping] = Contract(G, clusters, num_clusters);
if (G_clusters.m == 0) return clusters;
auto new_labels = Connectivity(G_clusters, beta, level + 1);

parallel_for(0, n, [&] (size_ti){
vtxid cluster = clustersi];

vixid gc_cluster = flags|cluster];
if (gc_cluster != flags[cluster + 1])
clusters[i] = mapping[new_labels[gc_cluster]] });
return clusters; (a) graph decomposition (b) contracted graph

}

