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Are (sequential) Algorithms “Prime Time”?
First hit on google search “core computer science concepts”:

40 Key Computer Science Concepts Explained in Layman’s Terms

Core Concept #1 - Algorithms and Data Structures
1.1 Big O Notation
1.2 Sorting Algorithms
1.3 Recursion …
1.4 Big Data
1.5 Data Structures

Core Concept #2 - Artificial Intelligence

        2.1 Greedy Algorithms



Are (sequential) Algorithms “Prime Time”?
Most first year undergraduate CS curriculums cover:

1. Sorting (insertion, quick, merge, heap?)
2. Big-O, some introduction to recurrences
3. Binary trees, probably BFS
4. …

Most programming languages have widely used libraries of algorithms:
1. STL in C++
2. Java collections
3. Python, the kitchen sink
4. …

Used by just about all programmers



Why are algorithms so successful?
● Broadly applicable
● Support general techniques/abstractions
● Simple and elegant
● Are easy to program
● Rely on a simple cost model
● Lead to interesting theoretical questions
● Lead to good efficiency in practice



Why are algorithms so successful?

The random access machine (RAM)
A great bridging model
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void DFS(int v, graph G, bool* visited) {
    visited[v] = true;
    visit(v);
    for (int u : G.adj[v])
  if (!visited[u]) DFS(u, G, visited);
}



Why are algorithms so successful?

The random access machine (RAM)
A great bridging model

Not perfect:

- E.g. caches
But there are natural
extensions to handle that
when needed
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Can we get the same “ecosystem” for parallelism?
● Broadly applicable
● general techniques
● Simple and elegant
● Easy to program
● Simple cost model
● Interesting theory
● Good efficiency in practice
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E.g. well suited to teach in first year UG classes instead of sequential algorithms



A brief history of parallel algorithms
The 60s and 70s: early exploration

Network models (hypercube, butterfly, meshes, etc.), e.g. Batcher sort
● Too low level, not portable

Circuit models (Nick’s class, the NC-hierarchy, P-complete problems)
● Not programmable
● NC ignores polynomial factors in work
● Some good parallel algorithms have polynomial depth



A brief history of parallel algorithms
The 80s: The decade of the PRAM

100s of papers on the topic

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour 
trees, scan, cascading, contraction

Very little code:
● Overly synchronous
● Not well suited for nested parallelism (e.g. parallel D&C)
● Ignores communication cost



A brief history of parallel algorithms
The 80s: The decade of the PRAM

100s of papers on the topic

Many cool ideas: Pointer jumping, random mate, random sampling, euler tour 
trees, scan, cascading, contraction

Real problem is assuming a fixed number of synchronous processors
● User needs to write their own “scheduler”



And parallel hardware

Catech/Intel
Cosmic cube
(1984)

Intel
Paragon
(1993)

Cray
XMP
(1982)

Thinking 
Machines
CM-2
(1987)

Cray
T3D

Thinking 
Machines
CM-5
(1991)

Maspar
MP-2
(1992)



First Parallel Desktop : The SugarCube (1987)



Prime time?
Although many excellent ideas:

● Million of $s each (mostly government labs)
● Programming was very difficult
● SIMD/vector and/or distributed memory made it hard
● Communication was inadequate
● Theory (PRAM) did not match practice



A brief history of parallel algorithms
The 90s: The PRAM “gone afoul” 

The log* failure: focus on non-robust details of the PRAM

Various more “realistic” models: 
● BSP, LogP : account for communication, but too synchronous, and pain 

to design algorithms for
gap : number of instructions per word transferred

● asynchronous PRAM : suffer some of the same problems as PRAM

Nested parallel (fork/join, work-depth model) : will come back to



The High Cost of Low Communication (1995)

gap



A brief history of parallel algorithms
The 00s+: special purpose 

GPU Models:
● To many details for a general model

Map-reduce models, e.g. MPC: 
● Bulk synchronous is limiting 
● Not shown to lead to efficient algorithms in practice

Domain specific models
● Not general



Can we get the same “ecosystem” for parallelism
● Broadly applicable
● general techniques
● Simple and elegant
● Easy to program
● Simple cost model
● Interesting theory
● Good efficiency in practice
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Nested Parallel Model 
Nested fork-join parallelism
● Binary or multiway forking (only affects span)
● Costs in terms of Work and Span (Depth)
● Compose work with sum, Span with max

 quicksort(A) =
    If (|A| < 2) return A
    p = pick random pivot from A
    L = [x in A | x < p]
    R = [x in A | x > p]
    (L’, R’) = (quicksort(L) || quicksort(R))
    return L ++ [p] ++ R

W(n) = O(n log n) whp
S(n) = O(log2 n) whp



Desiderata
Broadly Applicable

● Hardly know a clean parallel algorithm that does not fit the model

General Techniques

● Existing: Divide-and-conquer, dynamic programming, balanced trees, ..
● Newish: Contraction, random-mate, pointer doubling, scan (prefix sums)

Interesting Theory

● Of course



Desiderada
Lead to good efficiency in practice?



Do multicore’s work for parallelism?
Mean = 29.8     
32 core single chip (hyperthreaded)
Intel Saphire Rapids



Parlaylib: Examples

Mean = 29.8     
32 core/64 hyperthread single chip 
intel processor (Ice Lake)



Graph algorithms results (SPAA18)



Why is the performance good:
Memory Bandwidth (all machines with 2.5MHz processors)
Recall: gap = number of 8-byte words loaded/processor/cycle

Intel Haswell (2016), 18 core (1 chip), 80GB/sec:  gap = 4.5 

Cascade Lake (2018), 28 core (1 chip), 140GB/sec: gap = 4 

Intel Ice Lake (2021), 32 core (1 chip), 200GB/sec: gap = 3.2 

Intel Saphire Rapids (2023), 32 core (1 chip), 300GB/sec: gap = 2.2

Speedup of Reduce from:  9x -> 12x -> 15x -> 22x





Desiderata
Simple and elegant and Easy to program?

● BFS
● Merging
● Union of two balanced BSTs



Breadth First Search
void BFS(int start, sequence<sequence<int>& G) {                                                                                                     
  auto visited = tabulate<std::atomic<bool>>(G.size(), [&] (long i) {                                                                     
    return (i==start) ? true : false; });                                                                                                 
                                                                                                                                          
  sequence<int> frontier(1,start);                                                                                                        
  while (frontier.size() > 0) {                                                                                                           
    auto ngh = flatten(map(frontier, [&] (vertex u) {                                                                                     
      return G[u];}));                                                                                                                    
                                                                                                                                          
    frontier = filter(ngh, [&] (int v) {                                                                                                  
      return (!visited[v]) && visited[v].CAS(false, true);});                                                                             
  }  }

W(n,m) = O(m) 
S(n,m) = O(d log n)  
n vertices, m edges, diameter d



Merging (Divide and Conquer)
void merge(Slice A, Slice B, Slice R, F f) {                                                              
  long nA = A.size(); long nB = B.size(); long nR = nA + nB;  
  if (nR < Threshold) std::merge(A.begin(), A.end(), B.begin(), B.end(), R.begin(), f);                                   
  else if (nA == 0) copy(B, R);                                                                           
  else if (nB == 0) copy(A, R);                                                                           
  else {                                                                                                  

long mA = nA / 2;                                                                                     
long mB = std::lower_bound(B.begin(), B.end(), A[mA], f);                                           
long mR = mA + mB;                                                                                    
par_do([&]() { merge(A.cut(0, mA), B.cut(0, mB), R.cut(0, mR), f);},                                  

                    [&]() { merge(A.cut(mA, nA), B.cut(mB, nB), R.cut(mR, nR), f);}};  
  }}                                                     

W(n) = O(n)
S(n) = O(log2 n) 

A

B
binary search



Union of two balanced BSTs (e.g. Red-Black)
node* union(node* A, node* B) {                                                                                                    
  if (!A) return B;
  if (!B) return A; 
  auto [leftA, rightA] = split(A, B->key);                                                                                                
  auto [left, right] = par_do_pair(                                                                                                       
      [&] {return union(leftA, B->lc);}                                                                                                
      [&] {return union(rightA, B->rc);});                                                                                             
  return join(left, B->key, right);                                                                                                       
}      



Many other examples:
https://github.com/cmuparlay/parlaylib, in examples directory (search parlaylib)

2d_linear_program.h       find_if.h             longest_common_prefix.h       radix_tree.h                          
3d_range.h                flatten.h             longest_repeated_substring.h  range_min.h                           
bellman_ford.h            graph_color.h         low_diameter_decomposition.h  ray_trace.h                           
betweenness_centrality.h  hash_map.h            maximal_independent_set.h     rectangle_intersection.h              
BFS.h                     huffman_tree.h        maximal_matching.h            reduce.h                              
BFS_ligra.h               karatsuba.h           mcss.h                        samplesort.h                          
bigint_add.h              kcore.h               mergesort.h                   scan.h                                
box_kdtree.h              kmeans_pp.h           minimum_edit_distance.h       set_cover.h                           
bucketed_dijkstra.h       knn.h                 nbody_fmm.h                   spanning_tree.h                       
cartesian_tree.h          knuth_morris_pratt.h  oct_tree.h                    spectral_separator.h                  
cycle_count.h             knuth_shuffle.h       pagerank.h                    suffix_array.h                        
decision_tree_c45.h       kruskal.h             primes.h                      suffix_tree.h                         
delaunay.h                kth_smallest.h        push_relabel_max_flow.h       tokens.h                              
fast_fourier_transform.h  lasso_regression.h    quickhull.h                   triangle_count.h                      
filter.h                  le_list.h             quicksort.h                   word_counts.h                         
filter_kruskal.h          linefit.h             rabin_karp.h     

https://github.com/cmuparlay/parlaylib


Conclusion: 
Are Parallel Algorithms ready for prime time?

● Broadly applicable
● General techniques
● Simple and elegant
● Easy to program
● Simple cost model
● Interesting theory
● Good efficiency in practice
● Easy to debug

Yes for multicores.

Not yet for other models of parallelism 
(GPUs, MPC, PIM, Vector Units, …)

This is OK.   Good to separate the part 
we can move to e.g. an UG curriculum.



Purpose of asymptotic (big-O) analysis:
+ yes
1. Abstraction : avoid details
2. Guidance : towards a good algorithm
3. Scalability :  how will cost grow with size
4. Justify : algorithms, data structures and techniques

- no
1. Runtime : how fast will it run on my x247mpq-7rl-v3
2. Fine Tuning : lets get the last 10%
3. Fine Details : lets strip a log* n off of an n2 bound (my opinion)



What about locality
Achievable:
There is an inherent “sequential” left-to-right  order.

Analyze cache cost in this order. 
E.g. block recursive matrix multiply has same cost as sequentially

This leads to (provably) good behavior when simulated on various parallel cache 
hierarchies with shared and distributed caches, e.g.:
● Shared caches : use priority first scheduling
● Distributed Caches : use work-stealing
● Hierarchical caches : use space-bounded schedulers



Can we get the same “ecosystem” for parallelism
The binary-forking model
A great bridging model, at least for 
some class of machines.

Binary
Forking 
Model

Programming 
Languages

  Scheduler

 Algorithms
 + Analysis

Machines
shared address 
space



Quicksort
void quicksort(slice In, slice Out, Comp f, bool inplace) {                                         
  long n = In.size();                                                                                     
  if (n < Threshold) {                                                                                    

std::sort(In.begin(), In.end(), f);                                                                   
if (!inplace) copy(In, Out);                                                                          

  } else {                                                                                                
double p = In[n/2];                                                                                   
auto sizes = bucket_by(In, Out, [] (auto k) {return f(k,p) ? 0 : f(p,k) ? 2 : 1;}, 3);
long l = sizes[0]; long h = sizes[0] + sizes[1];                                                      
par_do([&]() {quicksort(Out.cut(0, l), In.cut(0, l), f, !inplace);},                                  

                    [&]() {quicksort(Out.cut(h, n), In.cut(h, n), f, !inplace);});                                 
if (inplace) copy(Out.cut(l,h), In.cut(l,h));                                                         

  }}

W(n) = O(n log n)  w.h.p
S(n) = O(log2 n)  w.h.p.

Partition into <, =, >



Education
We have been teaching this at CMU for almost 10 years now (started in 2012).

All our sophomores take a course “parallel and sequential data structures and 
algorithms” that teaches in this style.

Teach all the standard ideas + parallelism: D&C, DP, big-O, recurrences, DFS, 
BFS, Dijkstra’s, ...

Parallelism is not hard for them.   



What about other types of machines?
GPUs : becoming more like CPUs (perhaps they will become the same)

Distributed memory: seems hard to get General purpose clean model, but having 
a shared address space should be fine.  Race free programs do not need cache 
coherence (flush when needed).

Processing in memory: some recent work



Conclusions
Question: can parallel algorithms/analysis replace sequential algorithms/analysis, 
or ideally be part of the same “ecosystem”?

Binary forking model is a step towards the goal:
● Integrates well with sequential algorithms
● Can incorporate locality
● Simple code, and fast implementations

But some caveats
● Does not cover all machines
● Getting community buy in to parallelism is hard



Can we get the same “ecosystem” for parallelism
Measures of success:

● Every undergraduate data structures and algorithms course covers parallel 
algorithms throughout.

● All CS professionals know a collection of parallel techniques and algorithms
● All mainstream languages properly support parallelism
● Most library implementations are parallel
● Algorithms remain simple
● Parallel machine architecture helps simplify algorithm design



Word Counts
auto wordCounts(charseq const &s) {                                                                       
  auto str = parlay::map(s, [] (char c) {return std::isalpha(c) ? c : 0;}                                     
  auto words = parlay::tokens(str, [] (char c) {return c == 0;});                                         
  return parlay::count_by_key(words);                                                                     
}

W(n) = O(|s|)
S(n) = O(|s|1/2) 

Declares whitespace



Breadth First Search
vSequence BFS(vertex start, const Graph &G) {                                                              
  size_t n = G.numVertices();                                                                             
  vSequence parent(n, -1);                                                                              
  parent[start] = start;                                                                                  
  auto frontier = ligra::vertex_subset(start);                                                            
                                                                                                          
  while (frontier.size() > 0)                                                                             

frontier = ligra::edge_map(frontier,                                                                  
             [&] (vID v) { return parent[v] == -1;},                                                  
             [&] (vID u, vID v) { return CAS(parent[v], -1, u);});                                    
  return parent;                                                                                          
}

W(n,m) = O(m) 
S(n,m) = O(d log n)  
n vertices, m edges, diameter d

Maps over out-edges of each 
vertex in the frontier



Graph Connectivity
vSequence Connectivity(Graph& G) {
  size_t n = G.n;
  vSequence clusters = LDD(G);
  long num_clusters = RelabelIds(clusters);
  auto [G_clusters, flags, mapping] = Contract(G, clusters, num_clusters);
  if (G_clusters.m == 0) return clusters;
  auto new_labels = Connectivity(G_clusters, beta, level + 1);

  parallel_for(0, n, [&] (size_t i) {
     vtxid cluster = clusters[i];
     vtxid gc_cluster = flags[cluster];
     if (gc_cluster != flags[cluster + 1])
  clusters[i] = mapping[new_labels[gc_cluster]] });
  return clusters;
}

W(n,m) = O(m)  whp
S(n,m) = O(log2 n)  whp
n vertices, m edges, diameter d


