1 of 30

Rank Order Correlation

Dr. Anshul Singh Thapa

2 of 30

Introduction

  • Spearman’s rank correlation was developed by the British psychologist C.E. Spearman. It is used when the variables cannot be measured meaningfully. Ranking may be more meaningful when the measurements of variables are suspect. Consider the situation where we are required to calculate the correlation between height and weight of students in a remote village. Neither measuring rods nor weighing scales are available. The students can be easily ranked in terms of height and weight without using measuring rods and weighing scales.

3 of 30

  • There are also situations when you are required to quantify qualities such as fairness, honesty etc. Ranking may be a better alternative to quantification of qualities.
  • Moreover, sometimes the correlation coefficient between two variables with extreme values may be quite different from the coefficient without the extreme values. Under these circumstances rank correlation provides a better alternative to simple correlation.
  • Rank correlation coefficient and simple correlation coefficient have the same interpretation. Its formula has been derived from simple correlation coefficient where individual values have been replaced by ranks. These ranks are used for the calculation of correlation. This coefficient provides a measure of linear association between ranks assigned to these units, not their values.

4 of 30

  • The calculation of rank correlation will be illustrated under three situations.
    • The ranks are given.
    • The ranks are not given. They have to be worked out from the data.
    • Ranks are repeated.

5 of 30

The ranks are given

A

B

6

3

5

8

3

4

10

9

2

1

4

6

9

10

7

7

8

5

1

2

6 of 30

Solution:

R1

R2

(R1 – R2)

D

6

3

3

5

8

3

3

4

-1

10

9

1

2

1

1

4

6

-2

9

10

-1

7

7

0

8

5

3

1

2

-1

7 of 30

Solution:

R1

R2

(R1 – R2)

D

(R1 – R2)2

D2

6

3

3

9

5

8

3

9

3

4

-1

1

10

9

1

1

2

1

1

1

4

6

-2

4

9

10

-1

1

7

7

0

0

8

5

3

9

1

2

-1

1

8 of 30

Solution:

R1

R2

(R1 – R2)

D

(R1 – R2)2

D2

6

3

3

9

5

8

3

9

3

4

-1

1

10

9

1

1

2

1

1

1

4

6

-2

4

9

10

-1

1

7

7

0

0

8

5

3

9

1

2

-1

1

ΣD2 = 36

rs = 0.782

9 of 30

The ranks are not given. They have to be worked out from the data

Year

A

B

1

97.8

73.2

2

99.2

85.8

3

98.8

78.9

4

98.3

75.8

5

98.4

77.2

6

96.7

87.2

7

97.1

83.8

10 of 30

Solution

Year

A

R1

1

97.8

3

2

99.2

7

3

98.8

6

4

98.3

4

5

98.4

5

6

96.7

1

7

97.1

2

11 of 30

Solution

Year

A

R1

B

R2

1

97.8

3

73.2

1

2

99.2

7

85.8

6

3

98.8

6

78.9

4

4

98.3

4

75.8

2

5

98.4

5

77.2

3

6

96.7

1

87.2

7

7

97.1

2

83.8

5

12 of 30

Solution

Year

A

R1

B

R2

(R1 – R2)

D

1

97.8

3

73.2

1

2

2

99.2

7

85.8

6

1

3

98.8

6

78.9

4

2

4

98.3

4

75.8

2

2

5

98.4

5

77.2

3

2

6

96.7

1

87.2

7

-6

7

97.1

2

83.8

5

-3

13 of 30

Solution

Year

A

R1

B

R2

(R1 – R2)

D

(R1 – R2)2

D2

1

97.8

3

73.2

1

2

4

2

99.2

7

85.8

6

1

1

3

98.8

6

78.9

4

2

4

4

98.3

4

75.8

2

2

4

5

98.4

5

77.2

3

2

4

6

96.7

1

87.2

7

-6

36

7

97.1

2

83.8

5

-3

9

14 of 30

Solution

Year

A

R1

B

R2

(R1 – R2)

D

(R1 – R2)2

D2

1

97.8

3

73.2

1

2

4

2

99.2

7

85.8

6

1

1

3

98.8

6

78.9

4

2

4

4

98.3

4

75.8

2

2

4

5

98.4

5

77.2

3

2

4

6

96.7

1

87.2

7

-6

36

7

97.1

2

83.8

5

-3

9

ΣD2 = 62

rs = -0.107

15 of 30

Ranks are repeated

A

B

50

110

55

110

65

115

50

125

55

140

60

115

50

130

65

120

70

115

75

160

16 of 30

It may be noted that in series X, 50 has repeated thrice (m = 3), 55 has been repeated twice (m = 2), 65 has been repeated twice (m = 2).�In series Y, 110 has been repeated twice (m = 2), and 115 has been repeated thrice (m = 3)

A

B

50

110

55

110

65

115

50

125

55

140

60

115

50

130

65

120

70

115

75

160

17 of 30

Solution

A

R1

50

2

55

4.5

65

7.5

50

2

55

4.5

60

6

50

2

65

7.5

70

9

75

10

18 of 30

Solution

A

R1

B

R2

50

2

110

1.5

55

4.5

110

1.5

65

7.5

115

4

50

2

125

7

55

4.5

140

9

60

6

115

4

50

2

130

8

65

7.5

120

6

70

9

115

4

75

10

160

10

19 of 30

Solution

A

R1

B

R2

(R1 – R2)

D

50

2

110

1.5

0.5

55

4.5

110

1.5

3

65

7.5

115

4

3.5

50

2

125

7

-5

55

4.5

140

9

-4.5

60

6

115

4

2

50

2

130

8

-6

65

7.5

120

6

1.5

70

9

115

4

5

75

10

160

10

0

20 of 30

Solution

A

R1

B

R2

(R1 – R2)

D

(R1 – R2)2

D2

50

2

110

1.5

0.5

0.25

55

4.5

110

1.5

3

9.00

65

7.5

115

4

3.5

12.25

50

2

125

7

-5

25.00

55

4.5

140

9

-4.5

20.25

60

6

115

4

2

4.00

50

2

130

8

-6

36.00

65

7.5

120

6

1.5

2.25

70

9

115

4

5

25.00

75

10

160

10

0

00.00

21 of 30

Solution

A

R1

B

R2

(R1 – R2)

D

(R1 – R2)2

D2

50

2

110

1.5

0.5

0.25

55

4.5

110

1.5

3

9.00

65

7.5

115

4

3.5

12.25

50

2

125

7

-5

25.00

55

4.5

140

9

-4.5

20.25

60

6

115

4

2

4.00

50

2

130

8

-6

36.00

65

7.5

120

6

1.5

2.25

70

9

115

4

5

25.00

75

10

160

10

0

00.00

ΣD2 = 134

rs = 0.155

22 of 30

Rank Order Correlation

R1

R2

R3

1

3

6

6

5

4

5

8

9

10

4

8

3

7

1

2

10

2

4

2

3

9

1

10

7

6

5

8

9

7

23 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

1

3

6

-2

6

5

4

1

5

8

9

-3

10

4

8

6

3

7

1

-4

2

10

2

-8

4

2

3

2

9

1

10

8

7

6

5

1

8

9

7

-1

24 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

1

3

6

-2

-5

6

5

4

1

2

5

8

9

-3

-4

10

4

8

6

2

3

7

1

-4

2

2

10

2

-8

0

4

2

3

2

1

9

1

10

8

1

7

6

5

1

2

8

9

7

-1

1

25 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

(R2 – R3)

1

3

6

-2

-5

-3

6

5

4

1

2

1

5

8

9

-3

-4

-1

10

4

8

6

2

-4

3

7

1

-4

2

6

2

10

2

-8

0

8

4

2

3

2

1

-1

9

1

10

8

1

-9

7

6

5

1

2

1

8

9

7

-1

1

2

26 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

(R2 – R3)

D122

1

3

6

-2

-5

-3

4

6

5

4

1

2

1

1

5

8

9

-3

-4

-1

9

10

4

8

6

2

-4

36

3

7

1

-4

2

6

16

2

10

2

-8

0

8

64

4

2

3

2

1

-1

4

9

1

10

8

1

-9

64

7

6

5

1

2

1

1

8

9

7

-1

1

2

1

27 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

(R2 – R3)

D122

D132

1

3

6

-2

-5

-3

4

25

6

5

4

1

2

1

1

4

5

8

9

-3

-4

-1

9

16

10

4

8

6

2

-4

36

4

3

7

1

-4

2

6

16

4

2

10

2

-8

0

8

64

0

4

2

3

2

1

-1

4

1

9

1

10

8

1

-9

64

1

7

6

5

1

2

1

1

4

8

9

7

-1

1

2

1

1

28 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

(R2 – R3)

D122

D132

D23 2

1

3

6

-2

-5

-3

4

25

9

6

5

4

1

2

1

1

4

1

5

8

9

-3

-4

-1

9

16

1

10

4

8

6

2

-4

36

4

16

3

7

1

-4

2

6

16

4

36

2

10

2

-8

0

8

64

0

64

4

2

3

2

1

-1

4

1

1

9

1

10

8

1

-9

64

1

81

7

6

5

1

2

1

1

4

1

8

9

7

-1

1

2

1

1

4

29 of 30

Rank Order Correlation

R1

R2

R3

(R1 – R2)

(R1 – R3)

(R2 – R3)

D122

D132

D23 2

1

3

6

-2

-5

-3

4

25

9

6

5

4

1

2

1

1

4

1

5

8

9

-3

-4

-1

9

16

1

10

4

8

6

2

-4

36

4

16

3

7

1

-4

2

6

16

4

36

2

10

2

-8

0

8

64

0

64

4

2

3

2

1

-1

4

1

1

9

1

10

8

1

-9

64

1

81

7

6

5

1

2

1

1

4

1

8

9

7

-1

1

2

1

1

4

ΣD122 = 200

ΣD132 = 60

ΣD23 2 = 214

30 of 30

Solution