
RooWorkspace ⇄ JSON/YAML

Carsten Burgard

huge thanks to Nicolas Morange and Jonas Rembser for their help with getting this together!

special thanks also to the whole pyhf team as well as Jonas Eschle for valuable input

for the ROOT Users Workshop 2022

Disclaimer: This talk has an ATLAS bias!
Disclaimer: This talk draws some inspiration from pyhf!



Page 2

Introduction

• pyhf has been extremely successful in attracting users
• important reason (among others): ability to define models in a declarative language

• pyhf JSON is readable, editable, and feature-complete!
• however, limited to HistFactory use-case

• no “complicated” models, only stacks of homogeneously binned histograms in non-overlapping regions
• push towards publishing likelihoods is getting stronger

• as far as ATLAS in concerned, so far mostly done by the SUSY group, using pyhf json
• a declarative, software-independent format would be ideal

• HistFactory XML can also be used, but it’s not very user-friendly
• does not incorporate all data, templates are stored externally
• also cannot be obtained easily from existing workspace

Where this is coming from

a round-trip-capable, human-readable declarative format for 
statistical models was missing



Page 3

Illustration: HistFactory XML

Illustration: RooFit tree printout
• None of these are readable by anyone 

but experts for realistic scenarios

• XML does not incorporate shapes, 
which are defined in external files

• Tree printout only useful for inspection 
not editing / saving



Page 4

pyhf JSON
• Very specific use-case

• closely related to HistFactory

• Human-readable for simple examples
• much more so than the XML version



Page 5

Can we have the cake and eat it?

• PDFs are just computational graphs, with nodes are identified by name
→A completely generic, workspace-like syntax for JSON is possible

• powerful: any workspace can be translated to and from JSON by virtue of 
• the RooWorkspace factory language 
• RooProxy introspection capabilities

• bidirectional: converting the JSON back to a workspace yields the same workspace back
• conceptually simple: just a text-version of the computational graph structure of the workspace itself
• practically difficult: the JSON files might be huge and hard to read, write and edit

• HistFactory PDFs are (almost) trees
→ A simple, HistFactory JSON syntax is easy to achieve

• simple: can just use what pyhf is already using and provide reader and writer for this format
• usable: users can edit, read and write these files pretty easily (more easily than HistFactory XMLs)
• unidirectional: once your JSON is a workspace, there’s no turning back
• limited: it’s only HistFactory, no advanced features like acceptance corrections, morphing functions, …

• Can we have the best of both worlds, somehow?

The two options at hand



Page 6

Let’s make a generic format!

● few toplevel keys, all of dict-type - workspace-like
○ variables
○ pdfs
○ functions
○ data

● names of the items = names (id’s) of the objects
● variables have predefined properties

○ value, min, max, error, …
● pdfs & functions have one predefined key

○ type: string encoding the type of the pdf (unique!)
○ additional keys are possible

● everything has two additional keys for meta-information:
○ dict: storage for key-value pairs
○ tags: storage for list of strings 

Transcript of a RooArgusBG example, 
arbitrarily selected analytical example

This approach allows 1:1 mapping of workspaces, but 
is not likely to stay readable for large workspaces!

https://root.cern.ch/root/html512/examples/RoofitDemo.C.html


Page 7

The remedy: PDF Macros

• Introduce macros as bidirectional mappings for 
specific common structures

• HistFactory pdfs can map to a pyhf-like JSON 
structure

• this JSON structure will again generate a 
histfactory-like PDF

• Can be used as a means to “patch” workspaces
• If at some point in the future the default layout of 

HistFactory PDFs changes, this could be 
automatically applied to older workspaces by 
converting to and from JSON

• Allows to reap the benefits of having a concise 
representation of real-world workspaces with the 
need for generality



Page 8

The Implementation: RooJSONFactoryWSTool

• Factory class that manages import and export of functions, pdfs and variables
• Two-layer approach:

• some pdfs and functions require code to serialize or deserialize
• for those, you can write an “Importer” or “Exporter” and register it with the tool
• the importers/exporters inherit from RooJSONFactoryWSTool and can be implemented in user code and 

registered with the tool
• some do not need anything special, all you need to know is the mapping of keys in the JSON to the arguments in 

the class constructors (import) or the proxies (export)
• for these, a prescription of how to

import/export these objects
can be given declaratively

• Both importers/exporters and Import/Export 
Expressions can be written by users 
and added/removed at runtime

• Extremely flexible, no need to be feature 
complete from day 1

Import Expressions Export Expressions

https://indico.cern.ch/event/1069804/contributions/4498699/attachments/2298649/3909430/wsfactoryexpressions.json
https://indico.cern.ch/event/1069804/contributions/4498699/attachments/2298649/3909429/wsexportkeys.json


Page 9

What is there already

• Importers exist for
• RooBinSamplingPdf
• RooBinWidthFunction
• RooFormulaVar
• RooGenericPdf
• RooRealSumPdf
• RooHistFunc
• PiecewiseInterpolation
• RooProdPdf
• RooAddPdf
• RooSimultaneous
• RooRealSumPdf

• ImportExpressions exist for
• RooGaussian
• RooExponential
• RooPoisson
• RooProduct
• FlexibleInterpVar
• RooAddition
• ParamHistFunc
• RooArgusBG

This is sufficient for I/O of most HistFactory workspaces, plus a little bit more
• Exporters exist for

• RooBinWidthFunction
• RooProdPdf
• RooProdPdf
• RooSimultaneous
• RooBinSamplingPdf
• RooHistFunc
• RooGenericPdf
• RooFormulaVar
• RooRealSumPdf
• FlexibleInterpVar
• PiecewiseInterpolation

• ExportExpressions exist for
• RooGaussian
• RooPoisson
• RooExponential
• RooProduct
• RooProdPdf
• ParamHistFunc
• RooAddPdf
• RooAddition
• RooArgusBG

● List of available classes far from 
feature-complete

● Implemented in such a way that new 
imports/exporters can be added by 
users easily

● Procedure documented extensively in 
dedicated README

● Can dynamically generate 
documentation with the method
RooJSONWSFactoryTool::gendo
c 

● More comprehensive declaration of 
the format & available PDF types 
under development

https://github.com/root-project/root/blob/master/roofit/hs3/README.md
https://gitlab.cern.ch/cburgard/hep-statistics-serialization-standard


Page 10

Is this useful?

• Many useful applications, predominantly
• Convenience

• creating simple fits from scratch & writing files by hand
• producing non-HistFactory workspaces without having to interact with RooFit directly
• cross-validating with other fitting frameworks (such as pyhf, zfit, …)
• editing existing workspaces “by hand” for studies

• Publication & Preservation
• deposit and publish likelihoods in a way that is not tied to ROOT

• Whether it will actually be adopted by a broad user base, time will tell
• great interest from the experimental HEP community already
• will attempt to harmonize format as much as possible with other frameworks (pyhf, zfit)
• eagerly awaiting adaptation from theory colleagues

tool = ROOT.RooJSONFactoryWSTool(myworkspace)
tool.exportJSON(“myworkspace.json”)

ws = ROOT.RooWorkspace(“somename”)
tool = 
ROOT.RooJSONFactoryWSTool(ws)
tool.importJSON(“myworkspace.json”)

ws2json json2ws



Page 11

Summary & Conclusions

• ROOT 6.26 is able to read and write workspaces to JSON
• The implementation is “open-world” and intends to cover every possible use-case

• not restricted to HistFactory-like workspaces
• for such workspaces, there’s a straightforward mapping to pyhf JSON

• The library of importers & exporters is not feature-complete yet, but user-extendable
• Current catalogue is sufficient for ATLAS Higgs combination workspaces

• This development has great potential in making our lives easier and improving the 
quality of the results we publish

• This is still in an early phase, and widespread acceptance is still pending
• Feedback is highly welcome!
• Let’s get the ball rolling!


