
Ray for Large-Scale Data
Processing

Clark Zinzow
Software Engineer @ Anyscale

Data processing on Ray, with a focus on Dask-on-Ray

An overview of Ray and its ecosystem

What’s this talk about?

A bit about me

Software engineer at Anyscale

Working on the core Ray system, focusing on supporting
large-scale data processing

Before Anyscale, I was a Ray user!

And why should you care?

What is Ray?

A distributed task execution engine providing a simple API for building distributed
applications.

Core system design goals are performance and reliability, leveraging smart
decentralized scheduling, fault-tolerant protocols, and a high-performance
distributed in-memory object store to achieve high task throughput in the face of
failures.

Python-centric, although we have Java and C++ APIs!

Ecosystem is currently ML-focused, although we’re continuously broadening that
scope.

What is Ray?

Ray API and Programming
Model

def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

def add(a, b):
 return np.add(a, b)

a = read_array(file1)
b = read_array(file2)
sum = add(a, b)

Function

class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter()
c.inc()
c.inc()

Class

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

a = read_array(file1)
b = read_array(file2)
sum = add(a, b)

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter()
c.inc()
c.inc()

Function → Task Class → Actor

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

Function → Task Class → Actor

Ray API Principles

Kubernetes AWS GCELaptop

Ray Task, Actor, and Object APIs

Local Cluster Azure

Ray Autoscaler

Ray

Ray Architecture

Ray Architecture Overview

The Global Control Store
(RGCS) contains all
cluster/tasks state, and is
the only truly stateful
component of a Ray cluster

A driver is a Ray
client (application
code) and is
colocated with one
or more Ray
workers

Each node in a Ray cluster
has a raylet that (1)
makes scheduling
decisions for tasks created
by local drivers/workers,
and (2) facilitates object
transfers between nodes

The object store
(Plasma) is used for
persisting and
communicating all
task/actor inputs and
outputs; workers
only read/write
from/to their local
object store, with the
raylet facilitating
transfers to other
workers

A Ray Cluster

Under the Hood

Comparison to Other Systems

Stateful computation

Actor fault tolerance

Performance
Millions of tasks per second, millisecond latencies
Shared memory, zero-copy serialization

Built on gRPC and Arrow, C++ cross language bindings
Supports Python, C++, and Java (cross-language applications)

Why is Ray great for data
processing?

System Design

Ecosystem

Ray System Design

Distributed in-memory object store

Fast, smart, decentralized scheduling

Heterogeneous resources

Heterogeneous Resources

Ray can house disparate node types on a
single cluster:

● Differing hardware (CPUs and GPUs)

● Differing number of CPU cores

● Differing amount of CPU memory

These heterogeneous resources are all
schedulable at the task and actor level,
enabling fine-grained resource provisioning

Node 1

8 vCPUs
16 GiB RAM

Node 2
16 vCPUs
4 GPUs
64 GiB RAM

Node 3

32 vCPUs
1 GPU
128 GiB RAM

Distributed In-memory Object Store

Intermediate results transparently
cached in memory, transferred
over network

Zero-copy reads on same-node
workers via shared memory

Performance:

Ray scheduler limits how much
total memory can be used by
objects on single node

When object store is full, objects
are spilled to external storage

Reliability:

Scheduling

Decentralized scheduling => massive
scalability

Hot node mitigation - will attempt to
schedule tasks onto nodes with low
memory utilization

Locality-aware scheduling - will try to
schedule tasks on node with most
task dependency bytes already local

Data processing, model training,
model serving, reinforcement
learning, hyperparameter tuning

Ray Ecosystem

Ray Ecosystem

Native Libraries 3rd Party Libraries

universal framework for
distributed computing

Integration in Focus:
Dask-on-Ray

What is Dask?

Dask is a parallel computing library for Python, geared towards
scalable analytics

Dask provides parallel ndarray and dataframe abstractions
that extend the interfaces of NumPy and Pandas to
larger-than-memory workloads and distributed environments

What is Dask?

https://dask.org/

Dask arrays mimic the NumPy API

Dask collections and ecosystem

Dask-ML implements the sklearn API,
allowing for model training and inference
to run on Dask

Dask bags mimic the iterators, Toolz, and
PySpark APIs

Dask dataframes mimic the Pandas API

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(
 10, lambda pair: pair[1]).compute()

The task graph specification, representing
collection operations as a DAG of function
application tasks

Dask’s three core components

The collection
abstractions,
mimicking the
interfaces of familiar
data science libraries

Task schedulers and
execution backends,
which schedule tasks
for execution on a
cluster of cores and/or
machines

Dask task graph specification

The Dask task graph captures the data
dependencies of tasks

Each node represents an operation
(function) and each edge represents data
dependencies between two operations
(return values and arguments)

def inc(i):
 return i + 1

def add(a, b):
 return a + b

x = 1
y = inc(x)
z = add(y, 10)

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

The Dask task graph is explicitly
represented in memory, as a Python
dictionary

• Dask schedules tasks for execution onto one or more cores on one or
more machines

• Dask provides several scheduler options:

• A local synchronous scheduler, executing tasks serially

• A local multithreaded scheduler, executing tasks on a threadpool

• A local multiprocessing scheduler, executing tasks on a pool of
processes

• The distributed scheduler, executing tasks on a cluster of
machines (can also be run locally)

• The distributed scheduler must be used when workloads exhaust the
resources of a single machine

Dask task scheduling and execution

Distributed Dask Architecture

Centralized global scheduler that
manages cluster state and implements
scheduling policies

Both the scheduler and workers are
extendable via plugins

Workers share data over
peer-to-peer TCP connections

• Global scheduler is both a bottleneck and a single-point of failure

• No scheduler fault-tolerance

• Maintenance/introspection of cluster/task state adds task
scheduling overhead

• Scheduler is written in Python, and inherits Python’s performance
characteristics and resource footprint

• Can’t be natively scaled, would have to resort to sharding
schedulers

• Clients are designed for end-users, not for usage within a larger
production system

• Only nascent support for stateful execution

The pitfalls of Dask Distributed

Why would Ray be a good fit
for Dask workloads?

Decentralized, peer-to-peer distributed
scheduling

Ray Architecture Key Paradigms

No global scheduler bottleneck

Resource-aware local-first scheduling
policies with schedule decision caching

Support for fault-tolerant stateful actors

Distributed in-memory object store used for
peer-to-peer data communication and
zero-copy intra-node reads

All cluster/task state centralized in a Global
Control Store (backed by Redis), making
decentralized schedulers stateless

Cluster/task state introspection
shouldn’t affect scheduling
throughput

Faster local data sharing between
tasks

Great support for stateful execution

Smart distributed scheduling

Dask-on-Ray

A Dask scheduler that runs
Dask tasks on Ray

Dask-on-Ray API

This:

result = some_dask_collection.compute()

Dask-on-Ray API

turns into this:

ray.init() # connect to Ray cluster

dask.config.set(scheduler=ray_dask_get)

result = some_dask_collection.compute()

Pretty simple!

Dask-on-Ray Example
Start ray.
ray.init()

The Dask-on-Ray scheduler submits the underlying task graph to Ray.
df.groupby(["age"]).mean().compute()

Create a Dask DataFrame.
df = dd.from_pandas(pd.DataFrame(
 np.random.randint(0, 100, size=(1024, 2)),
 columns=["age", "grade"]), npartitions=2)

Set the scheduler to ray_dask_get in your config so you don't have to specify
it on each compute call.
dask.config.set(scheduler=ray_dask_get)

Custom optimization for Dask DataFrame shuffling, taking advantage of Ray’s
ability to have multiple return objects for a single task

Custom Shuffle Optimization

with dask.config.set(
 scheduler=ray_dask_get,
 dataframe_optimize=dataframe_optimize):
 df = ...
 # Setting max_branch to infinity is required in order for our
 # optimization to work.
 df.set_index(
 ["age"], shuffle="tasks", max_branch=float("inf")).head(
 10, npartitions=-1)

Ray-native Callbacks
Ray-native callback API for hooking into the Ray task submission and execution

lifecycle

ray_presubmit(task, key, deps):
Run before submitting a Ray task.

ray_postsubmit(task, key, deps, object_ref):
Run after submitting a Ray task.

ray_pretask(key, object_refs):
Run before executing a Dask task within a Ray task.

ray_posttask(key, result, pre_state):
Run after executing a Dask task within a Ray task.

ray_postsubmit_all(object_refs, dsk):
Run after all Ray tasks have been submitted.

ray_finish(result):
Run after all Ray tasks have finished executing and the final result has been returned.

Persisting

Support for the persist() inlined-futures semantics, similar to Dask Distributed

This submits all underlying Ray tasks to the cluster and returns a Dask array
with the Ray futures inlined.
d_arr_p = d_arr.persist()

Future computations on this persisted Dask Array will be fast since we already
started computing d_arr_p in the background.
d_arr_p.sum().compute()
d_arr_p.min().compute()
d_arr_p.max().compute()

Notice that the Ray ObjectRef is inlined. The dask.ones() task has been
submitted to and is running on the Ray cluster.
print(dask.base.collections_to_dsk([d_arr_p]))
{('ones-c345e6f8436ff9bcd68ddf25287d27f3',
0): ObjectRef(8b4e50dc1ddac855ffffffffffffffffffffffff0100000001000000)}

Dask-on-Ray
Implementation

Given that Ray tasks are just exported
(pickled) Python functions…

Dask-on-Ray Scheduler Implementation
@ray.remote

def add(a, b):

 return a + b

d = {'x': 1,
 'y': (inc, 'x'),
 'z': (add, 'y', 10)}

ray_dsk = {key: rayify(task) for key, task in dsk.items()}

def rayify(task):
 if not istask(task):
 return task
 remote_func = ray.remote(task[0])
 return [lambda *args: remote_func.remote(*args)] + task[1:]

we can execute any Dask graph on Ray!

if we convert each Dask task’s Python
function to a Ray remote function…

and Dask task graphs are just function
application graphs on (pickled) Python
functions…

What are the use cases for
Dask-on-Ray?

User Stories

Process 3.3 PiB of multidimensional data, generating 15 TiB of output.

Experimented with both Dask Distributed and Dask-on-Ray.

Dask-on-Ray successfully scaled up to a 7x larger cluster on AWS than Dask
Distributed.

Dask-on-Ray achieved a 4x higher throughput per core than Dask Distributed.

Overall, this resulted in a 13.5x faster processing of their workload (14.4 days vs
195 days) and a 4x reduction in cost (saving ~$700k).

Check out the blog post for more details!

Large-scale Xarray Workload at Amazon

https://www.jennakwon.page/2021/03/benchmarks-dask-distributed-vs-ray-for.html

Ray can handle large cluster and
data scales

Takeaways

Ray’s ecosystem has several great
data processing integrations, such
as Dask-on-Ray

• Ray docs
• Dask-on-Ray docs
• Blog post on Amazon xarray workload

Resources

https://docs.ray.io/en/master/
https://docs.ray.io/en/master/dask-on-ray.html
https://www.jennakwon.page/2021/03/benchmarks-dask-distributed-vs-ray-for.html

Thank You

