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Data processing on Ray, with a focus on Dask-on-Ray

An overview of Ray and its ecosystem

What’s this talk about?



A bit about me

Software engineer at Anyscale

Working on the core Ray system, focusing on supporting 
large-scale data processing

Before Anyscale, I was a Ray user!



And why should you care?

What is Ray?



A distributed task execution engine providing a simple API for building distributed 
applications.

Core system design goals are performance and reliability, leveraging smart 
decentralized scheduling, fault-tolerant protocols, and a high-performance 
distributed in-memory object store to achieve high task throughput in the face of 
failures.

Python-centric, although we have Java and C++ APIs!

Ecosystem is currently ML-focused, although we’re continuously broadening that 
scope.

What is Ray?



Ray API and Programming 
Model



def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

def add(a, b):
    return np.add(a, b)

a = read_array(file1)
b = read_array(file2)
sum = add(a, b)

Function

class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter()
c.inc()
c.inc()

Class



@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

a = read_array(file1)
b = read_array(file2)
sum = add(a, b)

@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter()
c.inc()
c.inc()

Function → Task Class → Actor



@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

Function → Task Class → Actor



Ray API Principles

Kubernetes AWS GCELaptop

Ray Task, Actor, and Object APIs

Local Cluster Azure

Ray Autoscaler

Ray



Ray Architecture



Ray Architecture Overview

The Global Control Store 
(RGCS) contains all 
cluster/tasks state, and is 
the only truly stateful 
component of a Ray cluster

A driver is a Ray 
client (application 
code) and is 
colocated with one 
or more Ray 
workers

Each node in a Ray cluster 
has a raylet that (1) 
makes scheduling 
decisions for tasks created 
by local drivers/workers, 
and (2) facilitates object 
transfers between nodes

The object store 
(Plasma) is used for 
persisting and 
communicating all 
task/actor inputs and 
outputs; workers 
only read/write 
from/to their local 
object store, with the 
raylet facilitating 
transfers to other 
workers



A Ray Cluster



Under the Hood



Comparison to Other Systems

Stateful computation

Actor fault tolerance

Performance
Millions of tasks per second, millisecond latencies
Shared memory, zero-copy serialization

Built on gRPC and Arrow, C++ cross language bindings
Supports Python, C++, and Java (cross-language applications)



Why is Ray great for data 
processing?

System Design

Ecosystem



Ray System Design

Distributed in-memory object store

Fast, smart, decentralized scheduling

Heterogeneous resources



Heterogeneous Resources

Ray can house disparate node types on a 
single cluster:

● Differing hardware (CPUs and GPUs)

● Differing number of CPU cores

● Differing amount of CPU memory

These heterogeneous resources are all 
schedulable at the task and actor level, 
enabling fine-grained resource provisioning

Node 1

8 vCPUs
16 GiB RAM

Node 2
16 vCPUs
4 GPUs
64 GiB RAM

Node 3

32 vCPUs
1 GPU
128 GiB RAM



Distributed In-memory Object Store

Intermediate results transparently 
cached in memory, transferred 
over network

Zero-copy reads on same-node 
workers via shared memory

Performance:

Ray scheduler limits how much 
total memory can be used by 
objects on single node

When object store is full, objects 
are spilled to external storage

Reliability:



Scheduling

Decentralized scheduling => massive 
scalability

Hot node mitigation - will attempt to 
schedule tasks onto nodes with low 
memory utilization

Locality-aware scheduling - will try to 
schedule tasks on node with most 
task dependency bytes already local



Data processing, model training, 
model serving, reinforcement 
learning, hyperparameter tuning

Ray Ecosystem



Ray Ecosystem

Native Libraries 3rd Party Libraries

universal framework for 
distributed computing



Integration in Focus: 
Dask-on-Ray



What is Dask?



Dask is a parallel computing library for Python, geared towards 
scalable analytics

Dask provides parallel ndarray and dataframe abstractions 
that extend the interfaces of NumPy and Pandas to 
larger-than-memory workloads and distributed environments

What is Dask?

https://dask.org/


Dask arrays mimic the NumPy API

Dask collections and ecosystem

Dask-ML implements the sklearn API, 
allowing for model training and inference 
to run on Dask

Dask bags mimic the iterators, Toolz, and 
PySpark APIs

Dask dataframes mimic the Pandas API

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(
    10, lambda pair: pair[1]).compute()



The task graph specification, representing 
collection operations as a DAG of function 
application tasks

Dask’s three core components

The collection 
abstractions, 
mimicking the 
interfaces of familiar 
data science libraries

Task schedulers and 
execution backends, 
which schedule tasks 
for execution on a 
cluster of cores and/or 
machines



Dask task graph specification

The Dask task graph captures the data 
dependencies of tasks

Each node represents an operation 
(function) and each edge represents data 
dependencies between two operations 
(return values and arguments)

def inc(i):
    return i + 1

def add(a, b):
    return a + b

x = 1
y = inc(x)
z = add(y, 10)

d = {'x': 1,
     'y': (inc, 'x'),
     'z': (add, 'y', 10)}

The Dask task graph is explicitly 
represented in memory, as a Python 
dictionary



• Dask schedules tasks for execution onto one or more cores on one or 
more machines

• Dask provides several scheduler options:

• A local synchronous scheduler, executing tasks serially

• A local multithreaded scheduler, executing tasks on a threadpool

• A local multiprocessing scheduler, executing tasks on a pool of 
processes

• The distributed scheduler, executing tasks on a cluster of 
machines (can also be run locally)

• The distributed scheduler must be used when workloads exhaust the 
resources of a single machine

Dask task scheduling and execution



Distributed Dask Architecture

Centralized global scheduler that 
manages cluster state and implements 
scheduling policies

Both the scheduler and workers are 
extendable via plugins

Workers share data over 
peer-to-peer TCP connections



• Global scheduler is both a bottleneck and a single-point of failure

• No scheduler fault-tolerance

• Maintenance/introspection of cluster/task state adds task 
scheduling overhead

• Scheduler is written in Python, and inherits Python’s performance 
characteristics and resource footprint

• Can’t be natively scaled, would have to resort to sharding 
schedulers

• Clients are designed for end-users, not for usage within a larger 
production system

• Only nascent support for stateful execution

The pitfalls of Dask Distributed



Why would Ray be a good fit 
for Dask workloads?



Decentralized, peer-to-peer distributed 
scheduling

Ray Architecture Key Paradigms

No global scheduler bottleneck

Resource-aware local-first scheduling 
policies with schedule decision caching

Support for fault-tolerant stateful actors

Distributed in-memory object store used for 
peer-to-peer data communication and 
zero-copy intra-node reads

All cluster/task state centralized in a Global 
Control Store (backed by Redis), making 
decentralized schedulers stateless

Cluster/task state introspection 
shouldn’t affect scheduling 
throughput

Faster local data sharing between 
tasks

Great support for stateful execution

Smart distributed scheduling



Dask-on-Ray

A Dask scheduler that runs 
Dask tasks on Ray



Dask-on-Ray API



This:

result = some_dask_collection.compute()

Dask-on-Ray API

turns into this:

ray.init()  # connect to Ray cluster

dask.config.set(scheduler=ray_dask_get)

result = some_dask_collection.compute()

Pretty simple!



Dask-on-Ray Example
# Start ray.
ray.init()

# The Dask-on-Ray scheduler submits the underlying task graph to Ray.
df.groupby(["age"]).mean().compute()

# Create a Dask DataFrame.
df = dd.from_pandas(pd.DataFrame(
    np.random.randint(0, 100, size=(1024, 2)),
    columns=["age", "grade"]), npartitions=2)

# Set the scheduler to ray_dask_get in your config so you don't have to specify
# it on each compute call.
dask.config.set(scheduler=ray_dask_get)



Custom optimization for Dask DataFrame shuffling, taking advantage of Ray’s 
ability to have multiple return objects for a single task

Custom Shuffle Optimization

with dask.config.set(
        scheduler=ray_dask_get,
        dataframe_optimize=dataframe_optimize):
    df = ...
    # Setting max_branch to infinity is required in order for our
    # optimization to work.
    df.set_index(
        ["age"], shuffle="tasks", max_branch=float("inf")).head(
            10, npartitions=-1)



Ray-native Callbacks
Ray-native callback API for hooking into the Ray task submission and execution 

lifecycle

ray_presubmit(task, key, deps):
Run before submitting a Ray task.

ray_postsubmit(task, key, deps, object_ref):
Run after submitting a Ray task.

ray_pretask(key, object_refs):
Run before executing a Dask task within a Ray task.

ray_posttask(key, result, pre_state):
Run after executing a Dask task within a Ray task.

ray_postsubmit_all(object_refs, dsk):
Run after all Ray tasks have been submitted.

ray_finish(result):
Run after all Ray tasks have finished executing and the final result has been returned.



Persisting

Support for the persist() inlined-futures semantics, similar to Dask Distributed

# This submits all underlying Ray tasks to the cluster and returns a Dask array
# with the Ray futures inlined.
d_arr_p = d_arr.persist()

# Future computations on this persisted Dask Array will be fast since we already
# started computing d_arr_p in the background.
d_arr_p.sum().compute()
d_arr_p.min().compute()
d_arr_p.max().compute()

# Notice that the Ray ObjectRef is inlined. The dask.ones() task has been
# submitted to and is running on the Ray cluster.
print(dask.base.collections_to_dsk([d_arr_p]))
# {('ones-c345e6f8436ff9bcd68ddf25287d27f3',
#   0): ObjectRef(8b4e50dc1ddac855ffffffffffffffffffffffff0100000001000000)}



Dask-on-Ray 
Implementation



Given that Ray tasks are just exported 
(pickled) Python functions…

Dask-on-Ray Scheduler Implementation
@ray.remote

def add(a, b):

    return a + b

d = {'x': 1,
     'y': (inc, 'x'),
     'z': (add, 'y', 10)}

ray_dsk = {key: rayify(task) for key, task in dsk.items()}

def rayify(task):
    if not istask(task):
        return task
    remote_func = ray.remote(task[0])
    return [lambda *args: remote_func.remote(*args)] + task[1:]

we can execute any Dask graph on Ray!

if we convert each Dask task’s Python 
function to a Ray remote function…

and Dask task graphs are just function 
application graphs on (pickled) Python 
functions…



What are the use cases for 
Dask-on-Ray?

User Stories



Process 3.3 PiB of multidimensional data, generating 15 TiB of output.

Experimented with both Dask Distributed and Dask-on-Ray.

Dask-on-Ray successfully scaled up to a 7x larger cluster on AWS than Dask 
Distributed.

Dask-on-Ray achieved a 4x higher throughput per core than Dask Distributed.

Overall, this resulted in a 13.5x faster processing of their workload (14.4 days vs 
195 days) and a 4x reduction in cost (saving ~$700k).

Check out the blog post for more details!

Large-scale Xarray Workload at Amazon

https://www.jennakwon.page/2021/03/benchmarks-dask-distributed-vs-ray-for.html


Ray can handle large cluster and 
data scales

Takeaways

Ray’s ecosystem has several great 
data processing integrations, such 
as Dask-on-Ray



• Ray docs
• Dask-on-Ray docs
• Blog post on Amazon xarray workload

Resources

https://docs.ray.io/en/master/
https://docs.ray.io/en/master/dask-on-ray.html
https://www.jennakwon.page/2021/03/benchmarks-dask-distributed-vs-ray-for.html


Thank You


