
datastructur.es

Announcements

Project 2A/2B is out.

● 2A is due Saturday, get started ASAP.
● 2A and 2B are both about as difficult as project 1A (Deques).
● The autograder is very minimal. Provide only sanity checks.
● Even if you pass all the sanity checks, you will not get all the points.

○ Full autograder will be run exactly one time after the deadline.
● Material for 2B will be covered on Friday’s lecture.

Reminder: Challenge labs.

● This week’s challenge lab is a classic really tough midterm problem from
last Spring.

● Sign up here: http://yellkey.com/century (not required)

http://datastructur.es
http://www.yellkey.com/century

datastructur.es

CS61B, 2019
Lecture 21: Tries
● Tries
● Trie Implementation and Performance
● Alternate Child Tracking Strategies
● Trie String Operations
● Autocomplete

http://datastructur.es

datastructur.es

Tries

http://datastructur.es

datastructur.es

Abstract Data Types vs. Specific Implementations

PQ

List

Set

Map

DisjointSets

Separate Chaining
Hash Table

LinkedList

Resizing Array

Heap

LLRB

BST (Vanilla)

B-Trees (2-3 / 2-3-4)

Heap

Ordered Linked List

Balanced Tree

Resizing Array

LinkedList

Quick Find

Quick Union

Weighted QU

WQUPC

There are many ways to implement an abstract data type.

● Today we’ll talk about a new way to build a set/map.

http://datastructur.es

datastructur.es

BST and Hash Table Set Runtimes

Runtimes for our Balanced Search
Tree and Hash Table implementations
were very fast.

If we know that our keys all have some
common special property, we can
sometimes get even better
implementations.

Example: Suppose we know our keys
are always single ASCII characters.

● e.g. ‘a’, ‘g’, ‘!’

contains(x) add(x)

Balanced Search Tree Θ(log N) Θ(log N)

Resizing Separate
Chaining Hash Table

Θ(1)† Θ(1)*†

*: Indicates “on average”.
†: Assuming items are evenly spread.

http://datastructur.es

datastructur.es

Special Case 1: Character Keyed Map

Suppose we know that our keys are
always ASCII characters.

● Can just use an array!
● Simple and fast.

public class DataIndexedCharMap<V> {
 private V[] items;
 public DataIndexedCharMap(int R) {
 items = (V[]) new Object[R];
 }
 public void put(char c, V val) {
 items[c] = val;
 }
 public V get(char c) {

 return items[c];
 }
}

R is the number of possible
characters, e.g. 128 for ASCII.

*: Indicates “on average”.
†: Assuming items are evenly spread.

key type get(x) add(x)

Balanced BST comparable Θ(log N) Θ(log N)

RSC Hash Table hashable Θ(1)† Θ(1)*†

data indexed array chars Θ(1) Θ(1)

http://datastructur.es

datastructur.es

Special Case 2: String Keyed Map

Suppose we know that our keys are
always strings.

● Can use a special data structure
known as a Trie.

● Basic idea: Store each letter of the
string as a node in a tree.

Tries will have great performance on:

● get
● add
● special string operations

*: Indicates “on average”.
†: Assuming items are evenly spread.

key type get(x) add(x)

Balanced BST comparable Θ(log N) Θ(log N)

RSC Hash Table hashable Θ(1)† Θ(1)*†

data indexed array chars Θ(1) Θ(1)

Tries Strings ? ?

http://datastructur.es

datastructur.es

Sets of Strings

Suppose we have a set containing “sam”, “sad”, “sap”, “same”, “a”, and “awls”.

● Below, we see the BST and Hash Table representation.

sad

same

sap

awls

a

0

1

2

3

sad

awls

a

same

sap

sam

sam

BST Hash Table

http://datastructur.es

datastructur.es

Tries: Each Node Stores One Character

For String keys, we can use a “Trie”. Key ideas:

● Every node stores only one letter.
● Nodes can be shared by multiple keys.

Above, we show the results of adding “sam” and sad”. Use your intuition to try
to insert the remaining items “sap”, “same”, “a”, and “awls”.

s

a

md

http://datastructur.es

datastructur.es

Tries: Each Node Stores One Character

For String keys, we can use a “Trie”. Key ideas:

● Every node stores only one letter.
● Nodes can be shared by multiple keys.

Above, we show the results of adding “sam” and sad”. Use your intuition to try
to insert the remaining items “sap”, “same”, “a”, and “awls”.

s

a

md p

e

a

http://datastructur.es

datastructur.es

Tries: Each Node Stores One Character

For String keys, we can use a “Trie”. Key ideas:

● Every node stores only one letter.
● Nodes can be shared by multiple keys.

Try to figure out a way to make it clear that our set contains “sam”, “sad”, “sap”,
“same”, “a”, and “awls”, but not “aw”, “awl”, “sa”, etc.

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Tries: Each Node Stores One Character

For String keys, we can use a “Trie”. Key ideas:

● Every node stores only one letter.
● Nodes can be shared by multiple keys.

Try to figure out a way to make it clear that our set contains “sam”, “sad”, “sap”,
“same”, “a”, and “awls”, but not “aw”, “awl”, “sa”, etc.

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Tries: Each Node Stores One Character

For String keys, we can use a “Trie”. Key ideas:

● Every node stores only one letter.
● Nodes can be shared by multiple keys.

Try to figure out a way to make it clear that our set contains “sam”, “sad”, “sap”,
“same”, “a”, and “awls”, but not “aw”, “awl”, “sa”, etc.

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Tries: Search Hits and Misses

Suppose we insert “sam”, “sad”, “sap”, “same”, “a”, and “awls”.

● contains(“sam”):
● contains(“sa”):
● contains(“a”):
● contains(“saq”): s

a

md p

e

a

w

l

s

Two ways to have a search “miss”:

● If the final node is white.
● If we fall off the tree, e.g. contains(“sax”).

true, blue node
false, white node

true, blue node
false, fell off tree

“hit”

“miss”

http://datastructur.es

datastructur.es

Trie Maps

Tries can also be maps, of course.

For an animated demo of the creation of this map, see this demo from our
optional Algorithms textbook.

y 4

b s

e

a 6 l

l

s

h

e 0

l

l

s 3

o

r

e 7

t

h

e 5

e.g. maps “by” to 4.

http://datastructur.es
http://www.cs.princeton.edu/courses/archive/spring15/cos226/demo/52DemoTrie.mov

datastructur.es

Tries: A Digit-by-Digit Set Representation

s

a

md p

e

a

w

l

s

sad

same

sap

awls

a

0

1

2

3

sad

awls

a

same

sap

sam

sam

BST HashSet Trie

http://datastructur.es

datastructur.es

Tries

Trie:

● Short for Retrieval Tree.
● Inventor Edward Fredkin suggested it should be pronounced “tree”, but

almost everyone pronounces it like “try”.

http://datastructur.es

datastructur.es

Trie Implementation and
Performance

http://datastructur.es

datastructur.es

Very Basic Trie Implementation

The first approach might look something like the code below.

● Each node stores a letter, a map from c to all child nodes, and a color.

s

a

md p

e

a

w

l

s

public class TrieSet {
 private static final int R = 128; // ASCII
 private Node root; // root of trie

 private static class Node {
 private char ch;
 private boolean isKey;
 private DataIndexedCharMap next;
 private Node(char c, boolean b, int R) {
 ch = c; isKey = b;
 next = new DataIndexedCharMap<Node>(R);
 }
 }
}

Since we know our keys are characters,
can use a DataIndexedCharMap.

http://datastructur.es

datastructur.es

Zooming in On a Node

Each DataIndexedCharMap is an array of 128 possible links, mostly null.

a

w

...

...

private static class Node {
 private char ch;
 private boolean isKey;
 private DataIndexedCharMap next;
 private Node(char c, boolean b, int R) {
 ch = c; isKey = b;
 next = new DataIndexedCharMap<Node>(R);
}

http://datastructur.es

datastructur.es

Zooming in On a Node

Better drawing of a DataIndexedCharMap based trie is shown to the right.

a

w

private static class Node {
 private char ch;
 private boolean isKey;
 private DataIndexedCharMap next;
 private Node(char c, boolean b, int R) {
 ch = c; isKey = b;
 next = new DataIndexedCharMap<Node>(R);
}

a

w

w

...

128 links, with one used, and 127
equal to null.

http://datastructur.es

datastructur.es

Very Basic Trie Implementation

If we use a DataIndexedCharMap to track children, every node has R links.

private static class Node {
 private char ch;
 private boolean isKey;
 private DataIndexedCharMap next;
 private Node(char c, boolean b, int R) {
 ch = c; isKey = b;
 next = new DataIndexedCharMap<Node>(R);
}

s

a

d

a

w

l

a s

a

d

w

l

...

...
...

...

...

...

...
...public class DataIndexedCharMap<V> {

 private V[] items;
 public DataIndexedCharMap(int R) {
 items = (V[]) new Object[R];
 }
 ...
}

http://datastructur.es

datastructur.es

Very Basic Trie Implementation

Observation: The letter stored inside each node is actually redundant.

● Can remove from the representation and things will work fine.

public class TrieSet {
 private static final int R = 128; // ASCII
 private Node root; // root of trie

 private static class Node {
 private char ch;
 private boolean isKey;
 private DataIndexedCharMap next;
 private Node(char c, boolean b, int R) {
 ch = c; isKey = b;
 next = new DataIndexedCharMap<Node>(R);
 }
 }
}

a s

a

d

w

l

...

...
...

...

...

...

...
...

http://datastructur.es

datastructur.es

Trie Performance in Terms of N

Given a Trie with N keys. What is the: [N = 6]

● Add runtime?
● Contains runtime? a s

a

d

w

l

...

...

... ...

...

...

...
...

s

m p

e

...

...

http://datastructur.es

datastructur.es

Trie Performance in Terms of N

Given a Trie with N keys. What is the: [N = 6]

● Add runtime? Θ(1)
● Contains runtime? Θ(1) a s

a

d

w

l

...

...

... ...

...

...

...
...

s

m p

e

...

...

Runtimes independent of number of keys!

Or in terms of L, the length of the key:

● Add: Θ(L)
● Contains: O(L)

http://datastructur.es

datastructur.es

Trie Performance in Terms of N

When our keys are strings, Tries give
us slightly better performance on
contains and add.

One downside of the DataIndexedCharMap-based Trie is the huge memory
cost of storing R links per node.

● Wasteful because most links are unused in real world usage.

*: Indicates “on average”.
†: Assuming items are evenly spread.

key type get(x) add(x)

Balanced BST comparable Θ(log N) Θ(log N)

RSC Hash Table hashable Θ(1)† Θ(1)*†

data indexed array chars Θ(1) Θ(1)

Tries (Data Indexed
Char Map)

Strings Θ(1) Θ(1)

Runtimes treating length of keys as a constant

http://datastructur.es

datastructur.es

Alternate Child Tracking
Strategies

http://datastructur.es

datastructur.es

Trie Performance in Terms of N

Using a DataIndexedCharMap is very memory hungry.

● Every node has to store R links, most of which are null.

a s

a

d

w

l

private static class Node {
 private boolean isKey;
 private DataIndexedCharMap next;

 private Node(char c, boolean b, int R) {
 ch = c; isKey= b;
 next = new DataIndexedCharMap<Node>(R);
}

http://datastructur.es

datastructur.es

The DataIndexedCharMap Trie

Can use ANY kind of map from
character to node, e.g.

● BST
● Hash Table

isKey:
links:

F

... 97 98 10099 ...

isKey:
links:

F

... 97 98 10099 ...

isKey:
links:

T

... 97 98 10099 ...

a

d isKey:
links:

T

... 97 98 10099 ...

c

Fundamental problem,
our arrays are ‘sparse’.

http://datastructur.es

datastructur.es

Alternate Idea #1: The Hash-Table Based Trie

isKey: F

a

d

c

links:

isKey: F
links:

isKey: T

links:

c

a
0
1
2
3

d0
1
2
3

0
1
2
3

http://datastructur.es

datastructur.es

Alternate Idea #2: The BST-Based Trie

isKey: F

a

d

c

‘c’

‘a’

links:

isKey: F

‘d’

links:
isKey: T

links:

isKey: T
links:

http://datastructur.es

datastructur.es

The Three Trie Implementations

When we implement a Trie, we have to pick a map to our children

● DataIndexedCharMap: Very fast, but memory hungry.
● Hash Table: Almost as fast, uses less memory.
● Balanced BST: A little slower than Hash Table, uses similar amount of

memory?

dictionary
from letter to
Node

DataIndexedCharMap

Hash Table

Balanced BST

this.next

http://datastructur.es

datastructur.es

Performance of the DataIndexedCharMap, BST, and Hash Table Trie

Using a BST or a Hash Table to store links to children will usually use less memory.

● DataIndexedCharMap: 128 links per node.
● BST: C links per node, where C is the number of children.
● Hash Table: C links per node.
● Note: Cost per link is higher in BST and Hash Table.

Using a BST or a Hash Table will take slightly more time.

● DataIndexedCharMap is Θ(1).
● BST is O(log R), where R is size of alphabet.
● Hash Table is O(R), where R is size of alphabet.

Since R is fixed (e.g. 128), can think of all 3 as Θ(1).

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Trie Performance in Terms of N

When our keys are strings, Tries give
us slightly better performance on
contains and add.

● Using BST or Hash Table will be
slightly slower, but more memory
efficient.

● Would have to do computational
experiments to see which is best
for your application.

… but where Tries really shine is their efficiency with special string operations!

*: Indicates “on average”.
†: Assuming items are evenly spread.

key type get(x) add(x)

Balanced BST comparable Θ(log N) Θ(log N)

RSC Hash Table hashable Θ(1)† Θ(1)*†

data indexed array chars Θ(1) Θ(1)

Tries (BST, Hash
Table, Data Indexed
Char Map)

Strings Θ(1) Θ(1)

Runtimes treating length of keys as a constant

http://datastructur.es

datastructur.es

Trie String Operations

http://datastructur.es

datastructur.es

String Specific Operations

Theoretical asymptotic speed improvement is nice. But the main appeal of tries is
their ability to efficiently support string specific operations like prefix matching.

● Finding all keys that match a given prefix: keysWithPrefix(“sa”)
● Finding longest prefix of: longestPrefixOf(“sample”)

s

a

md p

e

a

w

l

s

sad

same

sap

awls

a sam

0

1

2

3

sad

awls

a

same

sap

sam

http://datastructur.es

datastructur.es

Prefix Matching Operations

Theoretical asymptotic speed improvement is nice. But the main appeal of tries is
their ability to efficiently support string specific operations like prefix matching.

s

a

md p

e

a

w

l

s

Examples:

● Finding the longest prefix of a string:
longestPrefixOf(“sample”)
○ Result: sam

● Finding all keys that match a given prefix:
keysWithPrefix(“sa”)
○ Result: [sad, sam, same, sap]

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect() returns [“a”, “awls”, “sad”, “sam”, “same”, “sap”]

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect() returns [“a”, “awls”, “sad”, “sam”, “same”, “sap”]

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

Create colHelp.

● colHelp(String s, List<String> x, Node n)

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = []

colHelp("a", x,)

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = ["a"]

colHelp("aw", x,)

colHelp("a", x,)

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = ["a"]

colHelp("a", x,)

colHelp("aw", x,)

colHelp("awl", x,)

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = ["a"]

colHelp("a", x,)

colHelp("aw", x,)

colHelp("awls", x,)

colHelp("awl", x,)

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = ["a", "awls"]

colHelp("a", x,)

colHelp("aw", x,)

colHelp("awls", x,)

colHelp("awl", x,)

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

colHelp("s", x,)

x = ["a", "awls"]

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

colHelp("s", x,)

colHelp("sa", x,)

x = ["a", "awls"]

http://datastructur.es

datastructur.es

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():

● Create an empty list of results x.
● For character c in root.next.keys():

○ Call colHelp(“c”, x, root.next.get(c)).
● Return x.

colHelp(String s, List<String> x, Node n):

● If n.isKey, then x.add(s).
● For character c in n.next.keys():

○ Call colHelp(s + c, x, n.next.get(c))

s

a

md p

e

a

w

l

s

x = ["a", "awls", "sad",
 "sam", "same", "sap"]

colHelp("s", x,)

colHelp("sa", x,)

...

http://datastructur.es

datastructur.es

Usages of Tries

Challenge: Give an algorithm for keysWithPrefix.

● Example: keysWithPrefix(“sa”) is [“sad”, “sam”, “same”, “sap”].

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Usages of Tries

Challenge: Give an algorithm for keysWithPrefix.

● Example: keysWithPrefix(“sa”) is [“sad”, “sam”, “same”, “sap”].

Algorithm:

● Find the node α corresponding to the string (in pink).
● Create an empty list x.
● For character c in α.next.keys():

○ Call colHelp(“sa” + c, x, α.next.get(c)).

Another common operation: LongestPrefixOf. See lab.

s

a

md p

e

a

w

l

s

http://datastructur.es

datastructur.es

Autocomplete

http://datastructur.es

datastructur.es

The Autocomplete Problem

Example, when I type “how are” into Google, I get
10 results, shown to the right.

One way to do this is to create a Trie based map
from strings to values

● Value represents how important Google
thinks that string is.

● Can store billions of strings efficiently since
they share nodes.

● When a user types in a string “hello”, we:
○ Call keysWithPrefix(“hello”).
○ Return the 10 strings with the highest

value.

http://datastructur.es

datastructur.es

Autocomplete Example, for Top Three Matches

Suppose we have six strings with values shown below:

● buck: 10
● sad: 12
● smog: 5
● spit: 15
● spite: 20
● spy: 7

If the user types “s”, we:

● Call keysWithPrefix(“s”).
○ sad, smog, spit, spite, spy

● Return the three keys with highest value.
○ spit, spite, sad

s

a m

d

p

o

b

u

c

k g

yi

t

e

10

12

5 15

20

7

http://datastructur.es

datastructur.es

The Autocomplete Problem

One way to do this is to create a Trie based Dictionary that maps strings to values.

● When a user types in a string hello, we:
○ Call keysWithPrefix(“hello”).
○ Return the ten strings with the highest value.

The approach above has one major flaw. If we enter a short string, the number of
keys with the appropriate prefix will be too big.

● We are collecting billions of results only to keep 10!
● This is extremely inefficient.

http://datastructur.es

datastructur.es

A More Efficient Autocomplete

One way to address this issue:

● Each node stores its own
value, as well as the value
of its best substring. s

a m

d

p

o

b

u

c

k g

yi

t

e

None
10

None
10

None
10

10
10

value = None
best = 20

None
20

None
12

12
12

None
5

None
5

5
5

None
20

None
20

15
20

20
20

20

7
7

http://datastructur.es

datastructur.es

A More Efficient Autocomplete

One way to address this issue:

● Each node stores its own
value, as well as the value
of its best substring.

Search will consider nodes in
order of “best”.

● Consider ‘sp’ before ‘sm’.
● Can stop when top 3

matches are all better
than best remaining.

s

a m

d

p

o

b

u

c

k g

yi

t

e

None
10

None
10

None
10

10
10

value = None
best = 20

None
20

None
12

12
12

None
5

None
5

5
5

None
20

None
20

15
20

20
20

20

7
7

Details left as an exercise. Hint: Use a PQ! See Bear Maps gold points for more.

http://datastructur.es

datastructur.es

Even More Efficient Autocomplete

Can also merge nodes that are
redundant!

● This version of trie is
known as a “radix tree” or
“radix trie”.

● Won’t discuss.

s

ad mog p

buck

yit

e

10
10

value = None
best = 20

None
20

12
12

5
5

None
20

15
20

20
20

20

7
7

http://datastructur.es

datastructur.es

Trie Summary

http://datastructur.es

datastructur.es

Tries

When your key is a string, you can use a Trie:

● Theoretically better performance than hash table or search tree.
● Have to decide on a mapping from letter to node. Three natural choices:

○ DataIndexedCharMap, i.e. an array of all possible child links.
○ Bushy BST.
○ Hash Table.

● All three choices are fine, though hash table is probably the most natural.
● Supports special string operations like longestPrefixOf and keysWithPrefix.

○ keysWithPrefix is the heart of important technology like autocomplete.
○ Optimal implementation of Autocomplete involves use of a priority

queue!

Bottom line: Data structures interact in beautiful and important ways!

http://datastructur.es

datastructur.es

Domain Specific Sets and Maps

More generally, we can sometimes take special advantage of our key type to
improve our sets and maps.

● Example: Tries handle String keys. Allow for fast string specific operations.
● Note: There are many other types of string sets/maps out there.

○ Suffix Trees (Link).
○ DAWG (Link).
○ Won’t discuss in our course.

http://datastructur.es
https://en.wikipedia.org/wiki/Suffix_tree
https://en.wikipedia.org/wiki/Deterministic_acyclic_finite_state_automaton

