
In Search of a
Suitable Induction Principle

for Automated Induction
Koen Claessen

2018

joint work with

Linnea Andersson and Andreas Wahlstöm

quicksort [] = []
quicksort (x:xs) =
 quicksort [y | y <- xs, y <= x]
 ++ [x] ++
 quicksort [y | y <- xs, y > x]

ordered [] = True
ordered [x] = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

∀xs . ordered (quicksort
xs)

?

HipSpec / Hipster / TurboSpec / ...

automated
prover (FOL)

properties speculated
conjectures

induction
principles

proof
obligations

?

induction
principle

∀xs . ordered (quicksort
xs)

𝛗

∀xs,ys,n .
P(xs,ys,n)

● structural induction over xs
● structural induction over ys
● structural induction over n
● structural induction over xs,n
...
● structural induction over xs,ys,n

GOOD:
- simple
- often works
- reasonable amount of
possibilities

BAD:
- not enough

structural

quicksort [] = []
quicksort (x:xs) =
 quicksort [y | y <- xs, y <= x]
 ++ [x] ++
 quicksort [y | y <- xs, y > x]

ordered [] = True
ordered [x] = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

∀xs . ordered (quicksort
xs)

?

induction
principle

∀xs . ordered (quicksort
xs)

𝛗

∀x,n . size x = n ==> 𝛙

∀xs,n . size xs = n ==>
 ordered (quicksort xs)

● structural induction over n

● structural induction over n

GOOD:
- works in many cases

BAD:
- too many possibilities
- re-doing termination proof

what is size?

let the prover
search for

size...

size-based

induction principle

● powerful enough

● limited enough

induction
principle

∀xs . ordered (quicksort
xs)

quicksort [] = []
quicksort (x:xs) =
 quicksort [y | y <- xs, y <= x]
 ++ [x] ++
 quicksort [y | y <- xs, y > x]

 (Q([y | y <- xs, y <= x]) &
Q([]) Q([y | y <- xs, y > x])) ==> Q(x:xs)

 ∀xs . Q(xs)

GOOD:
- works in many cases

BAD:
- too many possibilities
- automation?

restrict/
specialize

recursion

induction
principle

∀xs . ordered (quicksort
xs)

quicksort [] = []
quicksort (x:xs) =
 quicksort [y | y <- xs, y <= x]
 ++ [x] ++
 quicksort [y | y <- xs, y > x]

P(_|_) P(f) ==> P(H(f))

 P(quicksort)

quicksort [] = []
quicksort (x:xs) =
 quicksort [y | y <- xs, y <= x]
 ++ [x] ++
 quicksort [y | y <- xs, y > x]

quicksort = H(quicksort)

GOOD:
- works with the
program/function directly

BAD:
- non-termination
- brittle

fixpoint

induction
principle

∀xs . ordered (quicksort
xs)

application

P1(xs,ys) =
 quicksort xs = ys ==> ordered ys

P2(ys,b) =
 ∀xs . (quicksort xs = ys &
 ordered ys = b) ==> b

Q1(xs) = P1(xs,quicksort(xs))

Q2(ys) = P2(ys,ordered(ys))
use recursion

induction

induction
principle

∀xs . ordered (quicksort
xs)

(as = [] & quicksort(as) = [])
\/
(as = b:bs & quicksort(as) =
 quicksort([y|y<-bs,y<=b])
 ++ [b] ++
 quicksort([y|y<-bs,y>b]))

application

ordered(quicksort(as)) ?

 & ordered(quicksort([y|y<-bs,y<=b]))
 & ordered(quicksort([y|y<-bs,y>b])))
)

induction
principle

∀xs . ordered (quicksort
xs)

(bs = [] & ordered(bs) = True)
\/
(bs = [c] & ordered(bs) = True)
\/
(bs = c:d:cs & ordered(bs) =
 c<=d && ordered(d:cs))

application

∀xs . quicksort(xs)=bs ==>
ordered(bs)

?

 & (∀xs . quicksort(xs)=d:cs ==>
 ordered(d:cs)))

application induction

GOOD:
- works in many cases
- works with the program/function directly
- helps the automated prover with
instances

BAD:BAD:
- not enough?

data Tree a = Leaf a | Node (Tree a) (Tree a)

flatten1 :: Tree a -> [a]
flatten1 (Leaf x) = [x]
flatten1 (Node v w) = flatten1 v ++ flatten1 w

flatten2 :: Tree a -> [a] -> [a]
flatten2 (Leaf x) xs = x:xs
flatten2 (Node v w) xs = flatten2 v (flatten2 w xs)

flatten3 :: [Tree a] -> [a]
flatten3 [] = []
flatten3 (Leaf x : ts) = x:flatten3 ts
flatten3 (Node v w : ts) = flatten3 (v:w:ts)

∀t . flatten3 [t] = flatten1
t

?

can we replace structural
induction with application

induction in real
benchmarks?

TIP results

everything that can be
proved using structural
induction can be proved

using application induction

surprising? treat = as a
recursive
function

not for
mutual recursion

sometimes non-trivial
application induction
instances are needed

similar number
of cases

sometimes proofs are
not found in time,

in practice

even, odd :: Nat -> Bool
even Zero = True
even (Succ n) = not (odd n)

odd Zero = False
odd (Succ n) = not (even n)

∀b . even (Succ (Succ n)) = even
n

?
unfolding

even, odd :: Nat -> Bool
even Zero = True
even (Succ n) = not (odd n)

odd Zero = False
odd (Succ n) = not (even n)

“deep” application
induction

...assume it here

when proving a
property about

even...

f = … f … g …

g = … g …

unfolding

f = … f … g …

g = … f … g …

prove g first

GOOD:
- works!

properties speculated
conjectures

application
properties

(conjectures)

proved
properties

try to prove one

use all
conjectures as

IHs

keep track of
which IHs were

needed

remove unproved
conjectures as

IHs

BAD:
- sometimes too much

Summary + Conclusions

● Application induction can replace structural induction in
practice
○ similar number of cases to try
○ also subsumes recursion induction in practice

● Mutual recursion needs to improve
○ dependency analysis?

● Integrate properly with TurboSpec
○ using counter-examples for conjectures

