In Search of a
Suitable Induction Principle
for Automated Induction

Koen Claessen
2018

joint work with

Linnea Andersson and Andreas Wahlstom

quicksort [] = []

quicksort (x:xs) =
quicksort [y | v <- xs, ¥y <= x]
++ [x] ++
quicksort [y | v <- xs, v > x]

ordered []
ordered [X]
ordered (X:y:Xs)

True
True
X <=y && ordered (y:xs)

Vxs . ordered (quicksort
XS)

HipSpec / Hipster / TurboSpec / ...

properties speculated
conjectures
; ¥ ~ f
| ' proo
induction Proc
principles /" obligations
_ y \

4 \
automated
prover (FOL)

- Y

induction
principle

J Vxs . ordered (quicksort

XS)
structural
(P¥
V Xs,ys,n .
P(Xs,ys,n)
GOOD:
- simple al Induction over xs,n

- often works

- reasonable amount of 3] induction over xs,ys,n

possibilities

quicksort [] = []

quicksort (x:xs) =
quicksort [y | v <- xs, ¥y <= x]
++ [x] ++
quicksort [y | v <- xs, v > x]

ordered []
ordered [X]
ordered (X:y:Xs)

True
True
X <=y && ordered (y:xs)

Vxs . ordered (quicksort
XS)

L induction J Vxs . ordered (quicksort
principle

XS)
size-based ¥

what is size? VXs,n . size Xs = n ==>
' ordered (quicksort xs)

let the prover e structural induction over n
search for]
size... s00D:
- works in many cases
* BAD:

- too many possibilities

vXx,n . size X = - re-doing termination proof

e structural induction over n

iInduction principle

e powerful enough

e limited enough

recursion

principle

XS)

[mductlonj Vxs . ordered (quicksort

quicksort [] = []
quicksort (x:xs) = |GOOD:

quicksort [y | v < - Works in many cases

++ [Xx] ++
quicksor\t [{ restrict/ \

BAD:
.- too many possibilities
- automation?

specialize I

|y <- xs, y >

Q([1)

(Q([y | yc<-xs,y<=x1])&
Q([vy

x 1)) ==>Q(x:xs)

Vxs . Q(xs)

fixpoint

induction Vxs . ordered (quicksort
principle XS)

quicksort = H(quicksort)

GOOD:
- works with the
P(_I_) P(f) ==> P(H(f)) |program/function directly

. BAD:
P(quicksort) - non-termination

- brittle

application
[induction —] Vxs . ordered (quicksort

principle %s) ¥

P2(ys,b) =
Vxs . (quicksort xs = ys
ordered ys = b)

&
== b

P1(xs,ys) =
quicksort xs = ys ==> ordered ys

b}

Q1(xs) = P1(xs,quicksort(xs))

use recursion
Q2(ys) = P2(ys,ordered(ys)) iInduction

application

induction Vxs . ordered (quicksort
principle XS)

(as = [] & quicksort(as) = [])
\/

(as

b:bs & quicksort(as) =
quicksort([y|y<-bs,y<=b])
++ [b] ++
quicksort([y|y<-bs,y>b])

& ordered(quicksort([y|y<-bs,y<=b]))
& ordered(quicksort([y|y<-bs,y>b])))

)

ordered(quicksort(as))

application

[|nQUcpon _} Vxs . ordered (quicksort
principle
XS)

(bs = [] & ordered(bs) = True)

\/

(bs = [c] & ordered(bs) = True)

\/

(bs = c:d:cs & ordered(bs) =

c<=d && ordered(d:cs)

& (Vxs . quicksort(xs)=d:cs ==>
ordered(d:cs)))

Vxs . quicksort(xs)=bs ==>
ordered(bs)

application induction

GOOD:

- Works in many cases

- works with the program/function directly
- helps the automated prover with
Instances

BAD:
- not enough?

data Tree a = Leaf a | Node (Tree a) (Tree a)

flattenl :: Tree a -> [a]
flattenl (Leaf x) = [x]
flattenl (Node v w) = flattenl v ++ flattenl w

flatten2 :: Tree a -> [a] -> [a]
flatten2 (Leaf x) Xxs = X:Xxs
flatten2 (Node v w) xs = flatten2 v (flatten2 w xs)

flatten3 :: [Tree a] -> [a]

flatten3 [] = []

flatten3 (Leaf x : ts) = x:flatten3 ts
flatten3 (Node v w : ts) = flatten3 (v:w:ts)

vVt . flatten3 [t] = flattenl
t

can we replace structural
iInduction with application
Induction in real
benchmarks?

TIP results

similar number
of cases

sometimes proofs are
everything that can be not found in time,
proved using structural In practice
induction can be proved
using application induction

surprising? treat = as a
recursive
function
not for _ sometimes non-trivial
mutual recursion application induction

iInstances are needed

Vb
n

even, odd :: Nat -> Bool
even Zero = True
even (Succ n) = not (odd n)

odd Zero False
odd (Succ n) = not (even n)

. even (Succ (Succ n)) = even

unfolding

“deep” application

when proving a induction
property about
even...
ven, odd :: Nat -> Bool
even Zero = True

even (Succ n) = not (odd n)

odd Zero False
odd (Succ n) = not (even n)

...assume it here

|
—+
oQ
—+
|
—+
0Q

|
0Q
oQ

|

—
0Q

prove g first

properties

speculated
conjectures

GOOD:
- works!

Xy

application
properties
(conjectures)

BAD:
- sometimes too much

P

try to prove one

\,
(

-

<
use all

conjectures as
IHs

J

-

|

f

remove unproved
conjectures as
IHs

which IHs were

proved

keep track of h _
properties

needed y

Summary + Conclusions

e Application induction can replace structural induction in
practice

o similar number of cases to try
o also subsumes recursion induction in practice

e Mutual recursion needs to improve
o dependency analysis?

e |Integrate properly with TurboSpec
o using counter-examples for conjectures

