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quicksort []     = []
quicksort (x:xs) =
  quicksort [ y | y <- xs, y <= x ]
  ++ [x] ++
  quicksort [ y | y <- xs, y > x ]

ordered []       = True
ordered [x]      = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

∀xs . ordered (quicksort 
xs)

?



HipSpec / Hipster / TurboSpec / ...

automated 
prover (FOL)

properties speculated 
conjectures

induction 
principles

proof 
obligations

?



induction 
principle

∀xs . ordered (quicksort 
xs)

𝛗

∀xs,ys,n . 
P(xs,ys,n)

● structural induction over xs
● structural induction over ys
● structural induction over n
● structural induction over xs,n
...
● structural induction over xs,ys,n

GOOD:
- simple
- often works
- reasonable amount of 
possibilities

BAD:
- not enough

structural



quicksort []     = []
quicksort (x:xs) =
  quicksort [ y | y <- xs, y <= x ]
  ++ [x] ++
  quicksort [ y | y <- xs, y > x ]

ordered []       = True
ordered [x]      = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

∀xs . ordered (quicksort 
xs)

?



induction 
principle

∀xs . ordered (quicksort 
xs)

𝛗

∀x,n . size x = n ==> 𝛙

∀xs,n . size xs = n ==>
          ordered (quicksort xs)

● structural induction over n

● structural induction over n

GOOD:
- works in many cases

BAD:
- too many possibilities
- re-doing termination proof

what is size?

let the prover 
search for 

size...

size-based



induction principle

● powerful enough

● limited enough



induction 
principle

∀xs . ordered (quicksort 
xs)

quicksort []     = []
quicksort (x:xs) =
  quicksort [ y | y <- xs, y <= x ]
  ++ [x] ++
  quicksort [ y | y <- xs, y > x ]

       ( Q([ y | y <- xs, y <= x ]) &
Q([])    Q([ y | y <- xs, y > x ]) ) ==> Q(x:xs)

                 ∀xs . Q(xs)

GOOD:
- works in many cases

BAD:
- too many possibilities
- automation?

restrict/ 
specialize

recursion



induction 
principle

∀xs . ordered (quicksort 
xs)

quicksort []     = []
quicksort (x:xs) =
  quicksort [ y | y <- xs, y <= x ]
  ++ [x] ++
  quicksort [ y | y <- xs, y > x ]

P(_|_)    P(f) ==> P(H(f))

       P(quicksort)

quicksort []     = []
quicksort (x:xs) =
  quicksort [ y | y <- xs, y <= x ]
  ++ [x] ++
  quicksort [ y | y <- xs, y > x ]

quicksort = H(quicksort)

GOOD:
- works with the 
program/function directly

BAD:
- non-termination
- brittle

fixpoint



induction 
principle

∀xs . ordered (quicksort 
xs)

application

P1(xs,ys) =
  quicksort xs = ys ==> ordered ys

P2(ys,b) =
  ∀xs . ( quicksort xs = ys &
            ordered ys = b ) ==> b

Q1(xs) = P1(xs,quicksort(xs))

Q2(ys) = P2(ys,ordered(ys))
use recursion 

induction



induction 
principle

∀xs . ordered (quicksort 
xs)

(as = [] & quicksort(as) = [])
\/
(as = b:bs & quicksort(as) =
               quicksort([y|y<-bs,y<=b])
               ++ [b] ++
               quicksort([y|y<-bs,y>b]))

application

ordered(quicksort(as)) ?

 & ordered(quicksort([y|y<-bs,y<=b]))
 & ordered(quicksort([y|y<-bs,y>b])))
 )



induction 
principle

∀xs . ordered (quicksort 
xs)

(bs = [] & ordered(bs) = True)
\/
(bs = [c] & ordered(bs) = True)
\/
(bs = c:d:cs & ordered(bs) =
                 c<=d && ordered(d:cs))
               

application

∀xs . quicksort(xs)=bs ==> 
ordered(bs)

?

 & (∀xs . quicksort(xs)=d:cs ==> 
            ordered(d:cs)))



application induction

GOOD:
- works in many cases
- works with the program/function directly
- helps the automated prover with 
instances

BAD:BAD:
- not enough?



data Tree a = Leaf a | Node (Tree a) (Tree a)

flatten1 :: Tree a -> [a]
flatten1 (Leaf x)   = [x]
flatten1 (Node v w) = flatten1 v ++ flatten1 w

flatten2 :: Tree a -> [a] -> [a]
flatten2 (Leaf x)   xs = x:xs
flatten2 (Node v w) xs = flatten2 v (flatten2 w xs)

flatten3 :: [Tree a] -> [a]
flatten3 []              = []
flatten3 (Leaf x   : ts) = x:flatten3 ts
flatten3 (Node v w : ts) = flatten3 (v:w:ts)

∀t . flatten3 [t] = flatten1 
t

?



can we replace structural 
induction with application 

induction in real 
benchmarks?



TIP results

everything that can be 
proved using structural 
induction can be proved 

using application induction

surprising? treat = as a 
recursive 
function

not for
mutual recursion

sometimes non-trivial 
application induction 
instances are needed

similar number 
of cases

sometimes proofs are 
not found in time,

in practice



even, odd :: Nat -> Bool
even Zero     = True
even (Succ n) = not (odd n)

odd Zero     = False
odd (Succ n) = not (even n)

∀b . even (Succ (Succ n)) = even 
n

?
unfolding



even, odd :: Nat -> Bool
even Zero     = True
even (Succ n) = not (odd n)

odd Zero     = False
odd (Succ n) = not (even n)

“deep” application 
induction

...assume it here

when proving a 
property about 

even...



f = … f … g … 

g = … g … 

 

unfolding

f = … f … g … 

g = … f … g … 

prove g first



GOOD:
- works!

properties speculated 
conjectures

application
properties

(conjectures)

proved
properties

try to prove one

use all 
conjectures as 

IHs

keep track of 
which IHs were 

needed

remove unproved 
conjectures as 

IHs

BAD:
- sometimes too much



Summary + Conclusions

● Application induction can replace structural induction in 
practice
○ similar number of cases to try
○ also subsumes recursion induction in practice

● Mutual recursion needs to improve
○ dependency analysis?

● Integrate properly with TurboSpec
○ using counter-examples for conjectures


