Chapter 3: Average Atomic Mass

Category	Grade	Weight (%)	Grade X decimal =ADD
Test	85 7	3. 50 =	42.5
Quiz/lab	92 x	40 =	36.8
HW	95 3	. 10 =	₊ 9.5

Average Atomic mass is the weighted average of all the naturally occurring isotopes of that element.

Check answer on the Periodic Table Round to 2 decimal places

$$\binom{Relative}{Abundance} = \frac{\%}{100}$$
 Unit: $\frac{g}{mole}$ or amu

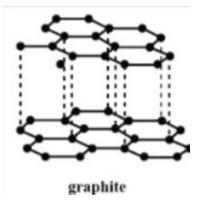
- When you add % what value is produced? 100
- When you <u>add Relative Abundances</u> what value is produced?

Chlorine-35 is one isotope of chlorine. (35 is the mass number). Chlorine-37 is another isotope of chlorine. How many protons and how many neutrons are in each isotope of chlorine?

Isotope	Protons	Neutrons
Chlorine-35	17	18
Chlorine-37	17	20

Of all chlorine atoms, 75.771% of chlorine atoms have a mass of 34.96885 amu. All other chlorine atoms are chlorine-37 and these have a mass of 36.96590 amu. What is the average atomic mass of chlorine?

Isotope Mass (amu)	Weight (%)	
34.96885 X	75.771 =	= 26.4962
36.96590X	.24.229=	=+8.956
O1 0/ - 1		$35.45 \frac{g}{mole}$

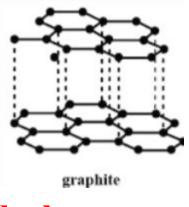

- Change % □ decimal
- Grade X decimal =
- ADD

Neon has 3-different isotopes. 90.51% of neon atoms have a mass of 19.992 amu. 0.27% of neon atoms have a mass of 20.994 amu. 9.22% of neon atoms have a mass of 21.991 amu. What is the average atomic mass of neon?

Isotope Mass (amu)	Weight (%)	
19.992 X	90.51	=18.095
20.994 X	00.27	= 0.0567
21.991 X	09.22	= $+$ 2.0276
Change % \(\begin{array}{c} \decimal \\ \decimal \\ \decimal \end{array}		$\frac{1}{20.18 \frac{g}{mole}}$

- Change % □ decimal
- Grade X decimal =

Isotope Composition SAME 99.89% Carbon-12 & 1.11% Carbon-13

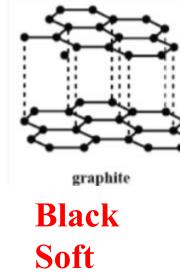

Isotope Vs. Allotrope

diamond

Properties

Black Soft Conductor

Can the existence of 2 isotopes explain the difference in the properties?


NO

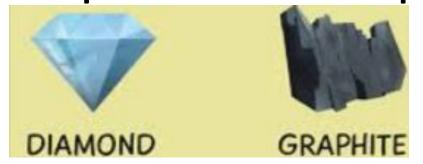
SAME Composition: 99.89% C-12 & 1.11% C-13 DIFFERENT Properties

Isotope Vs. Allotrope

Conductor

Propose an explanation for the differences of properties of diamond & graphite:

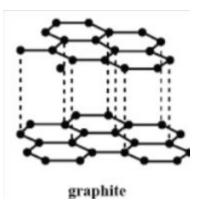
Diamond: 3-D structure & Graphite: Flat sheets


Colorless

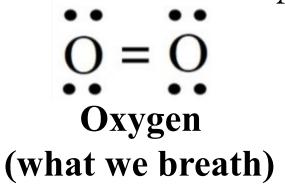
Very Hard

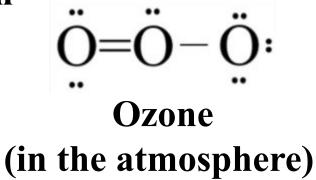
Insulator

Different structures (ways of bonding) leads to different properties

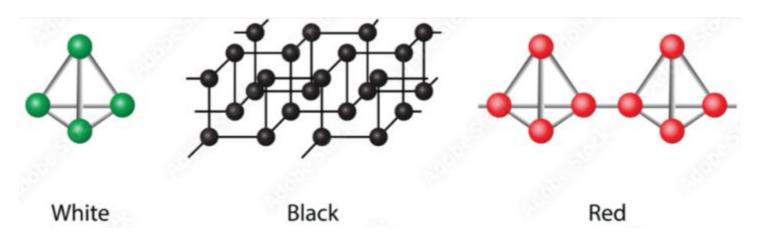

Isotope Vs. Allotrope

diamond




Black Soft Conductor

Define ALLOTROPE


Samples of the same element that have different properties b/c of bonding and structure differences

Allotropes of Oxygen

Allotropes of Phosphorus

Gallium has 2-naturally occurring isotopes, ⁶⁹Ga and ⁷¹Ga with masses of 68.9257 amu and 70.9249 amu, respectively. Calculate the 76 abundance of these isotopes of gallium?

Isotope	Mass (amu)	% Ab.	Rel. Ab.
Ga-69	68.9257	X	\mathbf{X}
Ga-71	70.9249	Y	$\mathbf{Y} = (1 - \mathbf{X})$
			X7 , X 7 • 4

$$X+Y=100 X+Y=1$$

$$(68.9257) X + (70.9249)(1-X) = 69.723$$

Solve for "X"

$$X = .6012 \times 100 = 60.1\% Ga-69$$

Rel. Ab. 39.9% Ga-71

Ga-69