
CSE 373 SP21 Section 3
Recurrence Party 🎉

MicroTeach: Recurrences

Big Idea

Three* steps in solving for the runtime of a recursive function.

Model Code with Recurrence

Use Tree Method to Turn Recurrence
into Summation.

Solve Summation for Closed Form

If Possible, Use Master Theorem for
Tight Bound

Modeling Code with Recurrences?

What is a Recurrence?

An expression that lets us express the runtime of a function recursively.

What is a Recurrence?

An expression that lets us express the runtime a function recursively.

Base Case

Recursive Case

What is a Recurrence?

An expression that lets us express the runtime a function recursively.

Base Case

Recursive Case

Recursive Call

Do Problems 1A + 3A Together!

Hint 2: You should use the answer from 1A to get 3A more quickly!

Hint 1: This is helpful for 1A (see “cheat-sheet” at end of PDF):

1A: Finding Bounds

1A: Finding Bounds

Outer loop runs N timesN

1A: Finding Bounds

The inner loop depends
on the outer loop

N

1A: Finding Bounds

Inside the inner loop, we have
a constant time operation

N

1A: Finding Bounds

Outer loop runs 0 ~ n - 1 times which defines i
Inner loop runs 0 ~ i - 1 times
As inner loop depends on the outer loop, we
can express as the summation below.

N N

Remember: Gauss’s identity

N

1A: Finding Bounds

POSSIBLE RUNTIME:

T(N) = N(N-1)/2 = ½ N2 - ½ N

WORST CASE RUNTIME:

Θ(N2)

N2/2 + N/2 => N2

Best/worst cases agree!

3A: Code To Recurrence

3A: Code To Recurrence

3A: Code To Recurrence

Base case when the input N <= 1

3A: Code To Recurrence

We saw the runtime for
this loop earlier!

3A: Code To Recurrence

It’s N(N-1)/2!

(see Finding Bounds a)

3A: Code To Recurrence

Call f(N/2)
Constant addition
Call f(N/2)
Call f(N/2)
Call f(N/2)

3A: Code To Recurrence

Calling 4 functions and
the input is divided by
half each level

Work happening in both
outer and inner loops
(see 1A)

3A: Code To Recurrence

Calling 4 functions and
the input is divided by
half each level

Work happening in both
outer and inner loops
(see 1A)

Can also simplify
non-recursive term (and
only this term) using
Big-O rules.

So you could also have
put N2 here.

3A: Code To Recurrence

Calling 4 functions and
the input is divided by
half each level

Work happening in both
outer and inner loops
(see 1A)

Can also simplify
non-recursive term (and
only this term) using
Big-O rules.

So you could also have
put N2 here.

In fact, you should
simplify before doing
Tree Method!

MicroTeach: Master Theorem

Where are we?

Three* steps in solving for the runtime of a recursive function.

Model Code with Recurrence

Use Tree Method to Turn Recurrence
into Summation.

Solve Summation for Closed Form

If Possible, Use Master Theorem for
Tight Bound

Master Theorem: A “Cheat Code” (Kinda)

NOTE: If you get lucky and
your recurrence matches
the Master Theorem form,
then you may use this
formula to jump right to the
final closed form.

(Of course, a lot of the time

it won’t match. That’s why
tree method is still
important.)

Use Master Theorem to find closed form

Original recurrence:

Step 1: Does T(n) match Master Theorem form?

a = 4

b = 2

e = 1

c = 2

Recall: could also have
put N2 here.

Use Master Theorem to find closed form

Original recurrence:

Step 2: Calculate logb(a) and compare it to c

a = 4

b = 2

e = 1

c = 2

logb(a) = log
2
(4)

log
2
(4) = 2

c = 2 so logb(a) = c

logb(a) = c so T(n) ∈ Θ(n2log n)
Ta-da!

4. Master Theorem
Use the cheat sheet attached to your section handout!

MicroTeach: Core Tree Method

Where are we?

Three* steps in solving for the runtime of a recursive function.

Model Code with Recurrence

Use Tree Method to Turn Recurrence
into Summation.

Solve Summation for Closed Form

If Possible, Use Master Theorem for
Tight Bound

Tree Method: Big Idea

This is a drawing approach that turns recurrences into summations.

Tree Method: Big Idea

This is a drawing approach that turns recurrences into summations.

i =0

i =1

i =2

i = 3

i = ???

Tree Method: Big Idea

This is a drawing approach that turns recurrences into summations.

i =0

i =1

i =2

i = 3

i = ???

Total Work:

Tree Method: Big Idea

This is a drawing approach that turns recurrences into summations.

i =0

i =1

i =2

i = 3

i = ???

But to actually compute
this, there are multiple
sub-questions we have

to ask!

(See Problem 5)

Total Work:

Problem 5A-G: Recurrence to Summation

The Tree

The Tree

The Tree

The Tree

5A: Input to a node at level i

We divide by 6 at each level, so the input at level i is n/6i.

5B: Work per node at (recursive) level i?

Same as the input to a node (in this case), so also n/6i.

5C: Number of nodes at level i

Each (non-base-case) node produces 3 more nodes, so at
level i we have 3i nodes.

5D: Total work at the ith recursive level

(number of nodes in level) x (work per node at level)

5D: Total work at the ith recursive level

(number of nodes in level) x (work per node at level)

3i x n/6i

5E: Last Level of the Tree

We hit our base case when n/6i = 1.

5E: Last Level of the Tree

n/6i = 1

5E: Last Level of the Tree

n = 6i

5E: Last Level of the Tree

log6(n) = i

5F: Total Work Done in the Base Case

(number of nodes in base case level) x (work per node in base case level)

5F: Total Work Done in the Base Case

(number of nodes in base case level) x (work per node in base case level)

5F: Total Work Done in the Base Case

(number of nodes in base case level) x (work per node in base case level)

5G: Total Work Summation

5G: Total Work Summation

Problem 5H: Getting the Closed Form

Where are we?

Three* steps in solving for the runtime of a recursive function.

Model Code with Recurrence

Use Tree Method to Turn Recurrence
into Summation.

Solve Summation for Closed Form

If Possible, Use Master Theorem for
Tight Bound

5H: Simplify to a closed form

Simplify the summation if possible (look for terms that can be
pushed out of the summation)

Does this match any of our identities?

5H: Simplify to a closed form

5H: Simplify to a closed form

NOTE: You don’t have to simplify further, but if you were, you
would get the following: (See section solutions for steps)

Problem 5I: Master Theorem

5I: Use Master Theorem to find closed form

Original recurrence:

Step 1: Does A(n) match Master Theorem form?

a = 3

b = 6

e = 1

c = 1

5I: Use Master Theorem to find closed form

Original recurrence:

Step 2: Calculate logb(a) and compare it to c

a = 3

b = 6

e = 1

c = 1

logb(a) = log
6
(3)

log
6
(3) = x

6x = 3 so x < 1

c = 1 so x < c

logb(a) < c so T(n) ∈ Θ(nc)Ta-da!

