

Today's Materials calculator pencil notebook glue 🖵 a smile

Expanding and Factoring

Lesson 19

CCSS Standards: Building on	• <u>7.NS.A</u>
CCSS Standards: Addressing	• 7.EE.A.1
CCSS Standards: Building towards	• 7.EE.A.1

2019 Open Up Resources | Download for free at openupresources.org.

Google Slides template from SlidesCarnival at https://www.slidescarnival.com.

Ø

Let's use the distributive property to write expressions in different ways.

Today's Goals

- I can organize my work when I use the <u>distributive property</u>.
- I can use the distributive property to rewrite expressions with positive and negative numbers.
- I understand the <u>factoring</u> and <u>expanding</u> are words used to describe using the distributive property to write equivalent expressions.

Number Talk: Parentheses

Warm up

Find the value of each expression <u>mentally</u>. $2 + 3 \cdot 4$ (2+3)(4) $2 - 3 \cdot 4$ 2 - (3 + 4)2 - 3 - 4

Factoring and Expanding with Negative Numbers

Activity 1

Directions, part 1:

In each row, write the equivalent expression.

- ★ Notice the organizers that appear above the table. These match the first 3 rows in the table.
 - If you get stuck, <u>draw more</u> organizers like these for other rows!

19.2: Factoring and Expanding with Negative Numbers

In each row, write the equivalent expression. If you get stuck, use a diagram to organize your work. The first row is provided as an example. Diagrams are provided for the first three rows.

factored	expanded
-3(5-2y)	- 15 + 6y
5(a - 6)	
	6a - 2b
-4(2w - 5z)	
-(2x - 3y)	
	20x - 10y + 15z
k(4 - 17)	
	10a – 13a
-2x(3y-z)	
	ab - bc - 3bd
-x(3y - z + 4w)	

Directions, part 2:

Work in table groups to complete the activity.

- ★ Partner 1 should write the equivalent expression and explain their reasoning.
 - If you disagree, work together to resolve the problem.
 - For the next row, the next partner should do the explaining.

19.2: Factoring and Expanding with Negative Numbers

In each row, write the equivalent expression. If you get stuck, use a diagram to organize your work. The first row is provided as an example. Diagrams are provided for the first three rows.

factored	expanded
-3(5-2y)	- 15 + 6y
5(a - 6)	
	6 <i>a</i> - 2 <i>b</i>
-4(2w - 5z)	
-(2x - 3y)	
	20x - 10y + 15z
k(4 - 17)	
	10 <i>a</i> – 13 <i>a</i>
-2x(3y-z)	
	ab - bc - 3bd
-x(3y-z+4w)	

factored	expanded	factored	expanded
-3(5-2y)	-15 + 6y	k(4 – 17)	
5(a - 6)			10a - 13a
	6a - 2b	-2x(3y-z)	
-4(2w - 5z)			ab - bc - 3bd
-(2x - 3y)		-x(3y-z+4w)	
	20x - 10y + 15z		

factored	expanded
-3(5 – 2y)	-15 + 6y
5(<i>a</i> – 6)	5a - 30
2(3a - b)	6a - 2b
-4(2w - 5z)	-8w + 20z
-(2x - 3y)	-2x + 3y
5(4x - 2y + 3z)	20x - 10y + 15z
<i>k</i> (4 – 17)	4k - 17k
<i>a</i> (10 – 13)	10a - 13a
-2x(3y-z)	-6xy + 2xz
b(a-c-3d)	ab - bc - 3bd
-x(3y-z+4w)	-3xy + xz - 4xw

Which rows did you and your partner disagree about? How did you resolve the disagreement?

Which rows are you the most unsure about?

Describe a process or procedure for taking a <u>factored expression</u> and writing its corresponding <u>expanded expression</u>.

Describe a process or procedure for taking an <u>expanded expression</u> and writing its corresponding <u>factored expression</u>.

To write an equivalent expression by <u>factoring</u> means... to use the distributive property to write a sum as a product.

To write an equivalent expression by <u>expanding</u> means... to use the distributive property to write a product as a sum.

Today's Goals

- I can organize my work when I use the <u>distributive property</u>.
- I can use the distributive property to rewrite expressions with positive and negative numbers.
- I understand the <u>factoring</u> and <u>expanding</u> are words used to describe using the distributive property to write equivalent expressions.

Equivalent Expressions

Cool Down

