
Template by: Laurent Lessard

Lists and Tuples
Python Module 4

● Basic (built-in) data types include: int, float, bool, str.

● Compound data types combine basic data types together.

● Built-in compound data types include: Lists (list),
Tuples (tuple), Dictionaries (dict), and Sets (set).

● This lesson focuses on Lists and Tuples.

Compound Data Types

2

Lists

● A sequence of items separated by a comma, between []

● The items in a list can be of different types

mylist = [100, "hundred", "100", 2.14e3]

print(mylist)

[100, 'hundred', '100', 2.14e3]

3

List concatenation and repetition

● Concatenating two lists
○ Use the + operator
○ Can be used to add items

to an existing list

● Repeating items
○ Use the * operator to

repeat the list a given
number of times

a = [1, "two", 3]

b = [["second", "list"], '7']

print(a + b)

[1, 'two', 3, ['second', 'list'], '7']

print([0] * 4)

[0, 0, 0, 0]

print([4, 2, 1] * 3)

[4, 2, 1, 4, 2, 1, 4, 2, 1]

4

List indexing

● Different from Matlab!
● Each item can be referenced from start or end:

X = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

 0 1 2 3 4 5 6

 -7 -6 -5 -4 -3 -2 -1

Starting from 0
counting from
beginning

Starting from -1
counting from
the end

X[5] + X[-7] + X[-5] + X[4]

'face'

5

List slicing

● Very different from Matlab!
● Can specify start, end, and step length.

X[a:b:s]

Starting from index a (inclusive).
If blank, starts at beginning if s>0
or starts at the end if s<0.

Ending at index b (exclusive).
If blank, ends at the end if s>0 or
ends at the beginning if s<0.

Move in steps of length s.
If blank, defaults to s=1.

The second colon may be
omitted, which just picks
the default value for s.

6

List slicing examples

X[1:4]

['b', 'c', 'd']

X = ['a', 'b', 'c', 'd', 'e', 'f', 'g']

 0 1 2 3 4 5 6

 -7 -6 -5 -4 -3 -2 -1

X[-5:5]

['c', 'd', 'e']

X[:3]

['a', 'b', 'c']

X[3:]

['d', 'e', 'f', 'g']

X[0:4:2]

['a', 'c']

X[3::-1]

['d', 'c', 'b', 'a']

(click to reveal) (click to reveal)

(click to reveal)

(click to reveal)

(click to reveal)

(click to reveal) 7

Strings can be indexed and sliced too!

● Strings can be indexed
and sliced just like lists

● Lists are mutable:
They can be changed

d = 'Data12'

print(d[2:5])

ta1

['a', 'b', 'c', 'z', 'e', 'f']

mylist = ['a', 'b', 'c', 'd', 'e', 'f']

mylist[3] = 'z'

print(mylist)

More Information: Mutable vs Immutable 8

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

WARNING: mutable vs immutable

● For immutable objects: the variable points to the object
● For mutable objects: the variable points to the container
● To create a new object, make a copy as shown below

x = 5

y = x

x = 6

print(x,y)

6 5

X = ['a', 'b']

Y = X

X[0] = 'z'

print(X,Y)

['z', 'b'] ['z', 'b']

X = ['a', 'b']

Y = list(X)

X[0] = 'z'

print(X,Y)

['z', 'b'] ['a', 'b']

9

Common built-in functions for Lists

mylist = [-1, 34, 56, 2, -345]

1. Calculate the length of a list using the len() function.

len(mylist)

5

2. Get the minimum from a list using the min() function.

min(mylist)

-345

3. Get the maximum from a list using the max() function.

max(mylist)

56 10

Common built-in functions for Lists

4. Sum of the elements in the list using the sum() function.

sum(mylist)

-254

5. Sorting the list using the sorted() function. (this creates a COPY of the list)

sorted(mylist)

[-345, -1, 2, 34, 56]

More Information: Built-in Lists Methods 11

https://www.pythonforbeginners.com/lists/lists-methods

Tuples

● Similar to a list, except tuples are immutable.

● Note the use of () parenthesis while defining tuples as
compared to the [] used in lists.

● Useful for indicating something that will not be changed.

DOB_record = ('Alicia', 'Smith', '3/12/1995')

print(DOB_record)

('Alicia', 'Smith', '3/12/1995')

12

Conversion between Tuples and Lists

● Conversion between lists
and tuples is possible using
tuple() and list()
built-in functions.

● These functions make a
copy of the object.

mytuple = (1, 2, 3, 4, 5)

mylist = list(mytuple)

type(mylist)

list

mytuple_converted = tuple(mylist)

type(mytuple_converted)

tuple

More Information: Python Tuples vs Lists 13

https://data-flair.training/blogs/python-tuples-vs-lists/

