
Static class features:
Stage 2 update

Daniel Ehrenberg
Igalia, in partnership with Bloomberg

TC39 January 2018

Context
● In November, TC39 split off “static” class features and demoted to Stage 2
● Reason: “static private” hazard for subclassing
● Several TC39 members contributed to a new proposal

○ Thanks for taking the extra time to work on this!
Kevin Gibbons, Allen Wirfs-Brock, Domenic Denicola, Jordan Harband, Michael Saboff,
Yehuda Katz, Justin Ridgewell, Adam Klein, Sathya Gunasekaran, Brian Terlson, Ron
Buckton, Rob Palmer, Daniel Rosenwasser, and many more

● This presentation: Stage 2 update
● Next meeting: Stage 3?

Summary of proposal
● Keep static public field declarations

○ Syntax: static x = y;
○ Semantics: Own data property definition on constructor

● Add lexically scoped functions to class bodies
○ Syntax: local function f() { }
○ Semantics: Function declaration hoisted to the top of the class definition

● Keep private instance methods (separate, stage 3 proposal)
○ Syntax: #method() { }
○ Semantics: Non-writable own private field on instances

● Do not add static private fields or methods to classes
● Possible extension: let, const, class declarations in class bodies

Outline of presentation
● Go through main proposal points
● Motivate each aspect of the proposal
● Does this seem like a good plan to the committee?
● Request Stage 3 reviewers for March

Static public fields

Proposal: Stick with the original semantics
● Analogous to instance public fields, but on the constructor
● Own, writable, configurable data properties of the constructor
● Scope:

○ Like an instance field declaration or concise method body
○ this is the constructor; super property access
○ arguments is poisoned
○ Class binding is active (no longer TDZ)

● Evaluation order
○ Computed property name evaluated with others
○ Initializer evaluated after class is done (to avoid class binding TDZ)
○ Evaluated once, just for the constructor where they are defined

Semantics case: Set() on the prototype chain
static Counter {
 static count = 0;
 static inc() { this.count++; }
}
class SubCounter extends Counter { }

Counter.hasOwnProperty("count"); // true
SubCounter.hasOwnProperty("count"); // false

Counter.count; // 0, own property
SubCounter.count; // 0, inherited

Counter.inc(); // undefined
Counter.count; // 1, own property
SubCounter.count; // 1, inherited

// ++ will read up the prototype chain and
write an own property
SubCounter.inc();

Counter.hasOwnProperty("count"); // true
SubCounter.hasOwnProperty("count"); // true

Counter.count; // 1, own property
SubCounter.count; // 2, own property

Counter.inc(); Counter.inc();
Counter.count; // 3, own property
SubCounter.count; // 2, own property

Semantics case: Set() on the prototype chain
● This is how JS works in general
● Similar situation with object

literals--one mental model

let x = { a: 1 };
let y = { __proto__: x };
y.a++;
y.a; // 2
x.a; // 1

● Regularity > Adding special case
● Utility: analogous to

class_attributes in Rails

// ++ will read up the prototype chain and
write an own property
SubCounter.inc();

Counter.hasOwnProperty("count"); // true
SubCounter.hasOwnProperty("count"); // true

Counter.count; // 1, own property
SubCounter.count; // 2, own property

Counter.inc(); Counter.inc();
Counter.count; // 3, own property
SubCounter.count; // 2, own property

s/static private/lexical declarations in class bodies/g

Motivation: Refactoring example (from Domenic)
class JSDOM {
 #createdBy;
 #registerWithRegistry(registry) {

// ... elided ...
 }

 static async fromURL(url, options = {}) {

normalizeFromURLOptions(options);

const body = await getBodyFromURL(url);
return JSDOM.#finalizeFactoryCreated(

 body, options, "fromURL");
 }

 static fromFile(filename, options = {}) {
const body = await

 getBodyFromFilename(filename);
return JSDOM.#finalizeFactoryCreated(

 body, options, "fromFile");
 }

 static #registry = new JSDOMRegistry();
 static #finalizeFactoryCreated(
 body, options, factoryName) {
 normalizeOptions(options);
 Jsdom = new JSDOM(body, options);

jsdom.#createdBy = factoryName;
jsdom.#registerWithRegistry(

 JSDOM.#registry);
return jsdom;

 }
 }

The Hazard of static private (from Justin Ridgewell)
class Base {
 static #field = 'hello';

 static get() {
 return this.#field;
 }
}

class Sub extends Base {}

// This one isn't controversial
Base.get() // => 'hello'

// Throws a TypeError!
Sub.get()

Resolution: Provide lexically scoped declarations
const registry = new JSDOMRegistry();
export class JSDOM {
 #createdBy;

 #registerWithRegistry(registry) {
 // ... elided ...
 }

 static async fromURL(url, options) {
 url = normalizeFromURLOptions(
 url, options);

 const body = await getBodyFromURL(url);
 return finalizeFactoryCreated(body,
options, "fromURL");
 }

 static async fromFile(filename, options) {
 const body = await
 getBodyFromFilename(filename);
 return finalizeFactoryCreated(
 body, options, "fromFile");
 }

 local function finalizeFactoryCreated(
 body, options, factoryName) {
 normalizeOptions(options);
 let jsdom = new JSDOM(body, options):
 jsdom.#createdBy = factoryName;
 jsdom.#registerWithRegistry(registry);
 return jsdom;
 }
}

Details
● local keyword makes it clear this is not

a method (bikeshed)

● f is available in a, c and g
● g can (lexically) access #d
● Async functions, generators, async

generators also supported
● Function is created “at the beginning of

the scope”; never a ReferenceError

class X extends Y {
[a]() { }
static b = c;
#d;
local function f() { g; }

}

https://github.com/tc39/proposal-static-class-features/issues/9

let, const and class declarations in class bodies?
● Execution order: Y, c, b, d, f, h
● Scope of Y, c, b, f: Lexical scope

○ this, super.x, yield, await, arguments
inherit from outside of class

● Scope of d, h: Method scope
○ this, super.x work against constructor
○ Disallowed yield, await, arguments

● Leave out var (not block scoped)
● Other kinds of statements disallowed
● Complicated and less clear use cases

● Proposal: Not yet
● Consider as a follow-on

class X extends Y {
local let a = b
static [c] = d;
local class e extends f { }
static g = h;

}

Private methods

Private methods and
accessors
Introducing for Stage 2
(Blast from the past--these are previously
presented slides, with new notes in red)
July 2017 (Currently, Stage 3)
Daniel Ehrenberg
Igalia

Code sample

class Counter extends HTMLElement {

 #xValue = 0;

 get #x() { return this.#xValue; }

 set #x(value) {

 this.#xValue = value;

 window.requestAnimationFrame(

 this.#render.bind(this));

 }

 #clicked() {

 this.#x++;

 }

 constructor() {

 super();

 this.onclick = this.#clicked.bind(this);

 }

 connectedCallback() { this.#render(); }

 #render() {

 this.textContent = this.#x.toString();

 }

}

window.customElements.define('num-counter',

Counter);

Why?

● Private methods encapsulate
behavior

● You can access private fields inside
private methods

class Counter extends HTMLElement {

 #x = 0;

 connectedCallback() { this.#render(); }

 #render() {

 this.textContent = this.#x.toString();

 }

}

Choice of syntax

Private method

class Counter extends HTMLElement {

 #x = 0;

 connectedCallback() { this.#render(); }

 #render() {

 this.textContent = this.#x.toString();

 }

}

● Similar to other methods
● Easy to change public <-> private
● Conclusion: Select this option

Alternative: Lexically scoped function

class Counter extends HTMLElement {

 #x = 0;

 connectedCallback() { render.call(this) }

 function render() {

 this.textContent = this.#x.toString();

 }

}

● Incongruous
● Pass receiver with call

Type checking or just a function?
● What does this do?

class C {

 #foo() { alert("hi"); }

 bar() {

 this.#foo();

 }

}

C.prototype.bar.call();

● TypeError or alert?

● Option: A funny lexically scoped
function declaration
○ Simpler to implement

● Option: Similar to a private field
○ Occasionally catch errors sooner

○ Difference between static and instance

methods

○ Conclusion: These semantics

Private accessors?
class Counter extends HTMLElement {

 #xValue = 0;

 get #x() { return this.#xValue; }

 set #x(value) {

 this.#xValue = value;

 }

}

● Pro:
○ Analogous to private methods; why not?

○ Could be useful for large classes

● Con:
○ Often, users could just call the method

instead

○ Could be strange to have getter/setters

but no reflection

● Open question
● Conclusion: include private accessors

Both private methods and lexically scoped fns?
● Advantages of private instance methods:

○ Easy refactoring between public and private--just add #
○ this, super
○ Terse, convenient, analogous to public methods

● No known hazards of instance private methods (unlike static private)
● JS has always had function-based and method-based phrasing available
● Programming w/ methods often about code organization, not dispatch

Conclusion

Summary
● Keep static public field declarations

○ Syntax: static x = y;
○ Semantics: Own data property definition on constructor

● Add lexically scoped functions to class bodies
○ Syntax: local function f() { }
○ Semantics: Function declaration hoisted to the top of the class definition

● Keep private instance methods (separate, Stage 3 proposal)
○ Syntax: #method() { }
○ Semantics: Non-writable own private field on instances

● Do not add static private fields or methods to classes
● Possible extension: let, const, class declarations in class bodies

Proposal status
● Detailed explainer (including alternatives)
● Specification text
● Static public fields

○ Test262 tests (currently backed out)
○ V8 implementation (behind a flag)

● Lexically scoped declarations in classes
○ No implementations or tests

● Private instance methods
○ Separate Stage 3 proposal
○ No implementations or tests

http://github.com/tc39/proposal-static-class-features/
http://tc39.github.io/proposal-static-class-features/

Next steps
● Follow up on issues

○ Bikeshedding about the token choice Bug
○ OK to leave class, let, const as a follow-on? Bug
○ Any other sources of hesitation? File an issue
○ Happy to have another VC meeting if anyone is interested

● Draft tests, prototype implementations
● Stage 3 reviewers?

https://github.com/tc39/proposal-static-class-features/issues/9
https://github.com/tc39/proposal-static-class-features/issues/17
https://github.com/tc39/proposal-static-class-features/issues/new

Bonus: Analysis of alternatives

https://github.com/tc39/proposal-static-class-features/blob/master/ALTERNATIVES.md

