# NAVODAYA VIDYALAYA SAMITI

e content preparation CLASS X -SCIENCE CHAPTER NO:3

> Prepared by, DEVIKRISHNA K P PGT CHEMISTRY JNV DAVANGERE

# Properties of Metals

#### **Properties**

- 1. Generally solids
- 2. Hard
- 3. Malleable and ductile(gold is the most ductile metal)
- 4. Good conductors of heat and electricity (Silver & copper is the best conductor)
- 5. Metallic Lusture
- 6. Sonorous
- 7. High m.p and b.p

• Gallium and cesium have very low m.p –melts in the palm

#### Exceptions

- Mercury is a liquid
- Lithium, Sodium are soft

# Properties of Non-metals

#### **Properties**

- 1. Generally solids or gases
- 2. Soft
- 3. Brittle
- 4. Bad conductor of heat and Electricity
- 5. No Lusture

#### Exceptions

- Bromine is a liquid
- Diamond- an allotrope of carbon is the hardest substance
- Graphite is a good conductor
- Iodine shows lusture

#### Chemical Properties of Metals

Reaction with Air/Oxygen
 Almost all metals combine with oxygen to form metal oxides.

 $\Box Metal + Oxygen \rightarrow Metal oxide$ 

- metal oxides are basic in nature.
- But some metal oxides show both acidic as well as basic behaviour-Amphoteric oxides.
  - Such metal oxides react with both acids as well as bases to produce salts and water.
    - ✓ Eg-Al<sub>2</sub>O<sub>3</sub>, ZnO

 $\begin{array}{rll} \mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{HCl} & \rightarrow & 2\mathrm{AlCl}_3 & + & 3\mathrm{H}_2\mathrm{O} \\ \mathrm{Al}_2\mathrm{O}_3 + 2\mathrm{NaOH} & \rightarrow & 2\mathrm{NaAlO}_2 + & \mathrm{H}_2\mathrm{O} \end{array}$ 

- Most metal oxides are insoluble in water
- But some of the metal oxides dissolve in water to form alkalis

□ Eg-Sodium oxide , Potassium oxide

$$\begin{split} &\mathrm{Na_2O(s)} \ + \ \mathrm{H_2O(l)} \rightarrow \mathrm{2NaOH(aq)} \\ &\mathrm{K_2O(s)} \ + \ \mathrm{H_2O(l)} \rightarrow \mathrm{2KOH(aq)} \end{split}$$

## Relative reactivity of Metals towards Oxygen

All metals do not react with oxygen at the same rate.

- potassium and sodium react so vigorously that they catch fire if kept in the open.
  - ✓ Hence, to protect them and to prevent accidental fires, they are kept immersed in kerosene oil.
- At ordinary temperature, the surfaces magnesium, aluminium, zinc, lead, etc., are covered with a thin layer of oxide.
  - ✓ The protective oxide layer prevents the metal from further oxidation.
- Iron does not burn on heating but iron filings burn vigorously when sprinkled in the flame of the burner.
- Copper does not burn, but the hot metal is coated with a black coloured layer of copper oxide.
- Silver and gold do not react with oxygen even at high temperatures

### Reaction with Water

- Metals react with water to produce a metal oxide and hydrogen
- Metal oxides that are soluble in water dissolve to form metal hydroxide.
  - $\Box$  Metal + Water  $\rightarrow$  Metal oxide + Hydrogen
  - $\Box$  Metal oxide + Water  $\rightarrow$  Metal hydroxide

#### **Relative reactivity of Metals towards water**

- Potassium and Sodium react violently with cold water.
  - the reaction is so violent and exothermic that the evolved hydrogen immediately catches fire.
- The reaction of calcium with water is less violent.
  - The heat evolved is not sufficient for the hydrogen to catch fire.
  - Calcium starts floating
    - ✓ the bubbles of hydrogen gas formed stick to the surface of the metal.
- Magnesium does not react with cold water. It reacts with hot water
  - □ form magnesium hydroxide and hydrogen.
  - □ It also starts floating
- Aluminium, iron and zinc do not react either with cold or hot water.
  - they react with steam to form the metal oxide and hydrogen.
- lead, copper, silver and gold do not react with water

## **Reaction with Acids**

- $\clubsuit$  Metal + Acid  $\rightarrow$  Salt + Hydrogen
- Hydrogen gas is not evolved when a metal reacts with nitric acid.
  - $\Box$  It is because  ${\rm HNO}_3$  is a strong oxidising agent.
  - □ It oxidises the  $H_2$  produced to water and itself gets reduced to any of the nitrogen oxides  $(N_2O, NO, NO_2)$ .
  - □ But magnesium (Mg) and manganese (Mn) react with very dilute  $HNO_3$  to evolve  $H_2$  gas.

### **Reaction with Other Metal salt** solution

- A more reactive metal displaces less reactive metal from its solution
  - □ Metal A + Salt solution of B → Salt solution of
    A + Metal B
- Displacement reaction can be used to determine the relative reactivity of Metals

## **Reactivity Series**

Metals arranged in the decreasing order of their reactivities

| К  | Potassium | Most reactive        |
|----|-----------|----------------------|
| Na | Sodium    |                      |
| Ca | Calcium   |                      |
| Mg | Magnesium |                      |
| Al | Aluminium |                      |
| Zn | Zinc      | Reactivity decreases |
| Fe | Iron      |                      |
| Pb | Lead      |                      |
| Н  | Hydrogen  |                      |
| Cu | Copper    |                      |
| Hg | Mercury   |                      |
| Ag | Silver    |                      |
| Au | Gold      | Least reactive       |

## Why Inert Gases are Inert?

- The outer most shell of noble/inert gases contain 8 electrons (except He)
- No other elements have 8 electrons in their valence shell
- The configuration of 8 electrons is very stable which makes the noble gases inert
  The configuration of 8 electron is known as octet
- Atoms of other elements attains stability if they get 8 electrons in their outermost shell

| Type of<br>element | Element        | Atomic<br>number | Number of<br>electrons in shells |   |   |   |
|--------------------|----------------|------------------|----------------------------------|---|---|---|
|                    |                |                  | K                                | L | M | N |
| Noble gases        | Helium (He)    | 2                | 2                                |   |   |   |
|                    | Neon (Ne)      | 10               | 2                                | 8 |   |   |
|                    | Argon (Ar)     | 18               | 2                                | 8 | 8 |   |
| Metals             | Sodium (Na)    | 11               | 2                                | 8 | 1 |   |
|                    | Magnesium (Mg) | 12               | 2                                | 8 | 2 |   |
|                    | Aluminium (Al) | 13               | 2                                | 8 | 3 |   |
|                    | Potassium (K)  | 19               | 2                                | 8 | 8 | 1 |
|                    | Calcium (Ca)   | 20               | 2                                | 8 | 8 | 2 |
| Non-metals         | Nitrogen (N)   | 7                | 2                                | 5 |   |   |
|                    | Oxygen (O)     | 8                | 2                                | 6 |   |   |
|                    | Fluorine (F)   | 9                | 2                                | 7 |   |   |
|                    | Phosphorus (P) | 15               | 2                                | 8 | 5 |   |
|                    | Sulphur (S)    | 16               | 2                                | 8 | 6 |   |
|                    | Chlorine (Cl)  | 17               | 2                                | 8 | 7 |   |

### How 'Na' attains stability

'Na' will loose one electron from its outer most shell

 $\begin{array}{rrr} \mathrm{Na} \rightarrow & \mathrm{Na}^{+} + \mathrm{e}^{-} \\ 2,8,1 & 2,8 \\ & \text{(Sodium cation)} \end{array}$ 

### How 'Cl' attains stability

Cl' will gain one electron to its outermost shell





- Sodium and chloride ions, are oppositely charged,
  - $\hfill\square$  They attract each other
  - □ They are held by strong electrostatic forces of attraction to exist as sodium chloride (NaCl).
- sodium chloride does not exist as molecules but aggregates of oppositely charged ions

# Properties of ionic compounds

#### Physical nature

□ Solids, Hard, Brittle in nature

# Melting and Boiling Point High melting and Boiling point

#### Solubility

Soluble in polar solvents and insoluble in nonpolar solvents

#### Conduction of electricity

Conducts electricity through solution.Non conductor in solid state



#### https://youtu.be/RV7Z1HnJJ9A

#### https://youtu.be/wh\_JyiS-6bE