Aerial Robotics
Rigid Body Dynamics
C. Papachristos
Robotic Workers (RoboWork) Lab
University of Nevada, Reno
CS-791
Rigid Body Dynamics
CS791 C. Papachristos
Kinematics & Dynamics
Important to consider for animation, navigation control, guidance, robot design, etc.
Important to consider for simulation, optimal control, robot design etc.
CS791 C. Papachristos
Kinematics & Dynamics
Dynamic Model Formulations
CS791 C. Papachristos
Rigid Body
(simple Linear Motion)
Linear Motion
CS791 C. Papachristos
Rigid Body
Rotational Motion
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
Unconstrained (floating-base) in the general case
We leverage dynamics couplings
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
The robot is flying as a rigid body with negligible aerodynamic effects on it – for the operating airspeeds
The propeller is considered as a simple disc that generates thrust and a moment around its shaft
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
Use�slide 12
:
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
Shorthand for the rule
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
Centrifugal
(acceleration)
Euler (acceleration)
Coriolis (acceleration)
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
Replacing in:
We take:
where:
CS791 C. Papachristos
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Newton-Euler Dynamics:
Finally, we append Forces and Moments
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Forces (in Body Frame):
Moments (in Body Frame):
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Forces (in Body Frame):
Moments (in Body Frame):
Simplified Rigid Body Dynamics Example: MAV Robot
CS791 C. Papachristos
Rigid Body Dynamics – Wrench
CS791 C. Papachristos
Rigid Body Dynamics – Wrench
Remember:
“Spatial” Wrench
“Body” Wrench
(1)
Substitute�in (1):
CS791 C. Papachristos
Rigid Body Dynamics – Wrench
CS791 C. Papachristos
Rigid Body Dynamics – Newton Euler
and
CS791 C. Papachristos
Rigid Body Dynamics – Newton Euler
Simplified Inertia Matrix (approx.�with principal moments of inertia):
(by equating Kinetic�Energy in 2 frames)
Spatial Inertia Matrix
Spatial Momentum of Rigid Body
CS791 C. Papachristos
Lie Bracket
CS791 C. Papachristos
Lie Bracket
CS791 C. Papachristos
Lie Bracket
corresponds to:
corresponds to:
Where:
for any:
CS791 C. Papachristos
Rigid Body Dynamics – Newton Euler
Newton-Euler Formulation
Spatial Inertia Matrix
Spatial Inertia Matrix expressed in {S} frame
: Dynamics Equation has same form regardless of coordinate frame
: “Inverse Dynamics” for Rigid Body
: “Forward Dynamics” for Rigid Body
CS791 C. Papachristos
Time for Questions !
CS-791
CS791 C. Papachristos