1 of 36

Aerial Robotics

Rigid Body Dynamics

C. Papachristos

Robotic Workers (RoboWork) Lab

University of Nevada, Reno

CS-791

2 of 36

Rigid Body Dynamics

  • We need a mathematical model to describe the relationship between a robot’s driving forces (thrust, wind, external disturbances, …) and its motion evolution (translational & rotational velocities)

  • Different systems have different methods of generating motion:
    • Propellers / Ducted Fans
    • Aerodynamic Surfaces
    • Actuated Joints

  • Start with a simple 4-Static Force Vector Rigid Body (e.g. Quadrotor)

CS791 C. Papachristos

3 of 36

Kinematics & Dynamics

  • Kinematics:
    • Provide motion of the robot without consideration of forces or torques producing the motion

Important to consider for animation, navigation control, guidance, robot design, etc.

  • Dynamics:
    • Describe relationship between forces and motions

Important to consider for simulation, optimal control, robot design etc.

CS791 C. Papachristos

4 of 36

Kinematics & Dynamics

Dynamic Model Formulations

  • Newton-Euler:
    • Yields recursive algorithm to derive dynamics (e.g. for multi-joint robots), computationally simple

  • Lagrange:
    • Conceptually straightforward, systematic development of model independent of reference frame

CS791 C. Papachristos

5 of 36

Rigid Body

 

 

 

 

 

(simple Linear Motion)

Linear Motion

CS791 C. Papachristos

6 of 36

Rigid Body

 

 

 

 

 

 

 

 

Rotational Motion

CS791 C. Papachristos

7 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

CS791 C. Papachristos

8 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

Unconstrained (floating-base) in the general case

  • Underactuated System:
    • 6 Degrees-of-Freedom, 4 actuators to control them
    • Generally (regardless of number of actuators), impossible to drive 1 DoF independently of all the rest

We leverage dynamics couplings

  • Goal
    • Develop relationship between forces moments and rigid body motion for a particular robot configuration

CS791 C. Papachristos

9 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

  • Assumption 1:

The robot is flying as a rigid body with negligible aerodynamic effects on it – for the operating airspeeds

  • Assumption 2:

The propeller is considered as a simple disc that generates thrust and a moment around its shaft

  • Model:

  • We have:

 

 

CS791 C. Papachristos

 

 

10 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

  • Remember: We already have Rigid Body Kinematic Equations:

 

 

 

CS791 C. Papachristos

11 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

CS791 C. Papachristos

12 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

CS791 C. Papachristos

13 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

Use�slide 12

:

 

 

 

CS791 C. Papachristos

14 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

 

 

 

 

 

CS791 C. Papachristos

15 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

Shorthand for the rule

 

 

 

CS791 C. Papachristos

16 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

 

 

CS791 C. Papachristos

17 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

Centrifugal

(acceleration)

Euler (acceleration)

Coriolis (acceleration)

 

 

 

CS791 C. Papachristos

18 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

CS791 C. Papachristos

19 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

 

 

 

CS791 C. Papachristos

20 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

 

CS791 C. Papachristos

21 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

CS791 C. Papachristos

22 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

  • Newton-Euler Formulation

Replacing in:

We take:

where:

 

 

 

 

CS791 C. Papachristos

23 of 36

Simplified Rigid Body Dynamics Example: MAV Robot

 

 

 

 

 

CS791 C. Papachristos

24 of 36

Newton-Euler Dynamics:

 

 

 

 

 

Finally, we append Forces and Moments

Simplified Rigid Body Dynamics Example: MAV Robot

CS791 C. Papachristos

25 of 36

Forces (in Body Frame):

Moments (in Body Frame):

Simplified Rigid Body Dynamics Example: MAV Robot

CS791 C. Papachristos

 

 

26 of 36

Forces (in Body Frame):

Moments (in Body Frame):

Simplified Rigid Body Dynamics Example: MAV Robot

CS791 C. Papachristos

 

 

27 of 36

Rigid Body Dynamics – Wrench

 

 

 

 

CS791 C. Papachristos

28 of 36

Rigid Body Dynamics – Wrench

 

 

 

 

Remember:

 

 

 

 

“Spatial” Wrench

“Body” Wrench

(1)

Substitute�in (1):

CS791 C. Papachristos

29 of 36

Rigid Body Dynamics – Wrench

  • Examples:

 

 

 

 

 

 

 

CS791 C. Papachristos

30 of 36

Rigid Body Dynamics – Newton Euler

 

 

 

 

 

 

 

 

and

CS791 C. Papachristos

31 of 36

Rigid Body Dynamics – Newton Euler

 

 

 

 

Simplified Inertia Matrix (approx.�with principal moments of inertia):

 

 

(by equating Kinetic�Energy in 2 frames)

 

 

Spatial Inertia Matrix

    • Symmetric
    • Positive-Definite

 

  • Note: Rigid Body Kinetic Energy expressed w.r.t. Twist & Spatial Inertia:

Spatial Momentum of Rigid Body

 

CS791 C. Papachristos

32 of 36

Lie Bracket

 

 

CS791 C. Papachristos

33 of 36

Lie Bracket

 

 

 

CS791 C. Papachristos

34 of 36

Lie Bracket

 

 

 

 

 

corresponds to:

 

 

 

corresponds to:

Where:

 

for any:

 

 

 

 

CS791 C. Papachristos

35 of 36

Rigid Body Dynamics – Newton Euler

Newton-Euler Formulation

  • Rigid Body Wrench in linear form:

  • Can also be expressed in terms of:

  • Change of coordinate frame (equate Kinetic Energy)

 

 

Spatial Inertia Matrix

 

 

 

 

Spatial Inertia Matrix expressed in {S} frame

 

: Dynamics Equation has same form regardless of coordinate frame

: “Inverse Dynamics” for Rigid Body

 

: “Forward Dynamics” for Rigid Body

 

CS791 C. Papachristos

36 of 36

Time for Questions !

CS-791

CS791 C. Papachristos