Basic Introduction to �Deep Learning
Dr. Patrick McClure
National Institute of Mental Health
Part 1: Linear Models
Key Components of Machine Learning
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Data
Regression
Classification
Â
Â
Â
Â
Â
Â
Model
Regression
Linear Regression Model
Classification
Logistic Regression Model
Â
Â
Â
Â
Â
Â
Â
Â
Objective Function
Regression
Linear Regression Model
Classification
Logistic Regression Model
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Learning Algorithm
Gradient Descent
Â
Learning Algorithm
Gradient Descent
Â
Â
Â
Â
Â
Â
Â
Â
Learning Algorithm
Gradient Descent
Chain Rule for Linear Regression
Â
Â
Â
Learning Algorithm
Gradient Descent
Chain Rule for Logistic Regression
Â
Â
Â
Learning Algorithm
Gradient Descent
Gradient Descent with Momentum
Â
Â
Â
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Basic Introduction to �Deep Learning
Dr. Patrick McClure
National Institute of Mental Health
Part 2: Neural Networks
Data: Non-linear
Regression
Classification
Â
Â
Â
Â
Â
Â
Model: Non-linear
Regression
Classification
Â
Â
Â
Â
Â
Â
Â
Â
Objective Function
Regression
Classification
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Model: Neural Network
Linear Regression
Neural Network Regression
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Â
Â
Â
Â
Model: Neural Network (Non-linearities)
Rectified Linear Unit (ReLU)
Sigmoid
Tanh
Â
Â
Â
Â
Â
Â
Â
Â
Model: Neural Network
Linear Regression
Neural Network Regression
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Â
Â
Â
Â
Non-Linearity
Model: Neural Network
Linear Regression
Neural Network Regression
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Â
Â
Â
Â
Model: Neural Network
Linear Regression
Neural Network Regression
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Â
Model: Neural Network
Linear Regression
Neural Network Regression
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Â
Â
Â
Â
Objective Function: Neural Network
Neural Network Regression
Regression Loss
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Â
Â
Â
Â
Â
Model: Neural Network
Logistic Regression
Neural Network Binary Classification
|
|
… |
… |
|
Â
Â
Weights
Â
Â
Â
…
…
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Sigmoid
Sigmoid
Â
Objective Function: Neural Network
Binary Classification Loss
Neural Network Binary Classification
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Non-Linearity
Sigmoid
Â
Â
Learning Algorithm: Backpropagation
Gradient Descent with Backpropagation
Â
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
Â
Â
Â
Â
Model: Deep Neural Network
Deep Neural Network Regression
|
|
… |
… |
|
|
|
… |
|
Â
Â
|
|
… |
|
|
|
… |
|
|
|
… |
|
|
|
… |
|
|
|
… |
|
…
Â
Model: Deep Neural Network
Deep Neural Network Binary Classification
|
|
… |
… |
|
|
|
… |
|
Â
Â
Â
|
|
… |
|
|
|
… |
|
|
|
… |
|
|
|
… |
|
|
|
… |
|
…
Learning Algorithm: Backpropagation
Gradient Descent with Backpropagation
Â
Â
Â
Â
|
|
… |
… |
|
|
|
… |
|
Â
|
|
… |
|
Â
|
|
… |
|
Â
Â
|
|
… |
|
Learning Algorithm: Backpropagation
Gradient Descent with Backpropagation
Â
Â
|
|
… |
… |
|
|
|
… |
|
Â
|
|
… |
|
Â
|
|
… |
|
Â
Â
Â
Â
|
|
… |
|
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?
Basic Introduction to �Deep Learning
Part 3: Convolutional Neural Networks
Dr. Patrick McClure
National Institute of Mental Health
Data: Time Series
EEG Amplitude
Time (seconds)
|
…
| | | | | | | | |
Model: 1-D Convolutional Neural Network
EEG Amplitude
Time (seconds)
|
…
|
| | |
|
Â
| | | | | | | | |
Model: 1-D Convolutional Neural Network
EEG Amplitude
Time (seconds)
|
…
|
| | |
Â
| |
| | | | | | | | |
Model: 1-D Convolutional Neural Network
EEG Amplitude
Time (seconds)
|
…
|
| | |
Â
| |
| | | | | | | | |
|
Model: 1-D Convolutional Neural Network
EEG Amplitude
Time (seconds)
|
…
| | | | | | | | |
| | | | | | | | |
|
…
Model: 1-D Convolutional Neural Network
| | | | | | | | |
|
…
| | | | | | | | |
|
…
| | | | | | | | |
|
…
…
Â
Â
Regression
Classification
Model: 1-D Convolutional Neural Network
| | | | | | | | |
|
…
| | | | | | | | |
|
…
| | | | | | | | |
|
…
…
| | |
| | |
Â
| | |
…
Â
|
Â
Â
Model: 1-D Convolutional Neural Network
42
| | | | | | | | |
|
…
| | | | | | | | |
|
…
| | | | | | | | |
|
…
…
| | |
| | |
Â
| | |
…
Â
|
Â
Â
|
Model: 1-D Convolutional Neural Network
| | | | | | | | |
|
…
| | | | | | | | |
|
…
| | | | | | | | |
|
…
…
Â
Â
| | | | | | | | |
|
…
Model: 1-D Convolutional Neural Network
Increasing Receptive Field Sizes
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
Input
Convolutional
Layer 1
Convolutional
Layer 2
…
Data: Images and Volumes
Images (2-D)
Volumes (3-D)
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Model: n-D Convolutional Neural Networks
2-D Convolution
3-D Convolution
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | |
| | |
| | |
Key Components of Machine Learning
What are the inputs and the true outputs?
How are we transforming the inputs into outputs?
How do we determine if the outputs of the model are good?
How do we find model parameters that lead to good model outputs?