1 of 48

Basic Introduction to �Deep Learning

Dr. Patrick McClure

National Institute of Mental Health

Part 1: Linear Models

2 of 48

Key Components of Machine Learning

3 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

4 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

5 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

6 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

7 of 48

Data

Regression

Classification

 

 

 

 

 

 

8 of 48

Model

Regression

Linear Regression Model

Classification

Logistic Regression Model

 

 

 

 

 

 

 

 

9 of 48

Objective Function

Regression

Linear Regression Model

Classification

Logistic Regression Model

 

 

 

 

 

 

 

 

 

 

 

 

 

10 of 48

Learning Algorithm

Gradient Descent

 

11 of 48

Learning Algorithm

Gradient Descent

 

 

 

 

 

 

 

 

12 of 48

Learning Algorithm

Gradient Descent

Chain Rule for Linear Regression

 

 

 

13 of 48

Learning Algorithm

Gradient Descent

Chain Rule for Logistic Regression

 

 

 

14 of 48

Learning Algorithm

Gradient Descent

Gradient Descent with Momentum

 

 

 

15 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

16 of 48

Basic Introduction to �Deep Learning

Dr. Patrick McClure

National Institute of Mental Health

Part 2: Neural Networks

17 of 48

Data: Non-linear

Regression

Classification

 

 

 

 

 

 

18 of 48

Model: Non-linear

Regression

Classification

 

 

 

 

 

 

 

 

19 of 48

Objective Function

Regression

Classification

 

 

 

 

 

 

 

 

 

 

20 of 48

Model: Neural Network

Linear Regression

Neural Network Regression

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

Non-Linearity

 

 

 

 

21 of 48

Model: Neural Network (Non-linearities)

Rectified Linear Unit (ReLU)

Sigmoid

Tanh

 

 

 

 

 

 

 

 

22 of 48

Model: Neural Network

Linear Regression

Neural Network Regression

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

 

 

 

 

Non-Linearity

23 of 48

Model: Neural Network

Linear Regression

Neural Network Regression

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

Non-Linearity

 

 

 

 

24 of 48

Model: Neural Network

Linear Regression

Neural Network Regression

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

Non-Linearity

 

25 of 48

Model: Neural Network

Linear Regression

Neural Network Regression

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

Non-Linearity

 

 

 

 

26 of 48

Objective Function: Neural Network

Neural Network Regression

Regression Loss

…

…

…

 

 

 

…

Non-Linearity

 

 

 

 

 

27 of 48

Model: Neural Network

Logistic Regression

Neural Network Binary Classification

…

…

 

 

Weights

 

 

 

…

…

 

…

…

…

 

 

 

…

Non-Linearity

Sigmoid

Sigmoid

 

28 of 48

Objective Function: Neural Network

Binary Classification Loss

Neural Network Binary Classification

…

…

…

 

 

 

…

Non-Linearity

Sigmoid

 

 

29 of 48

Learning Algorithm: Backpropagation

Gradient Descent with Backpropagation

 

…

…

…

 

 

 

…

 

 

 

 

30 of 48

Model: Deep Neural Network

Deep Neural Network Regression

…

…

…

 

 

…

…

…

…

…

…

 

31 of 48

Model: Deep Neural Network

Deep Neural Network Binary Classification

…

…

…

 

 

 

…

…

…

…

…

…

32 of 48

Learning Algorithm: Backpropagation

Gradient Descent with Backpropagation

 

 

 

 

…

…

…

 

…

 

…

 

 

…

33 of 48

Learning Algorithm: Backpropagation

Gradient Descent with Backpropagation

 

 

…

…

…

 

…

 

…

 

 

 

 

…

34 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?

35 of 48

Basic Introduction to �Deep Learning

Part 3: Convolutional Neural Networks

Dr. Patrick McClure

National Institute of Mental Health

36 of 48

Data: Time Series

EEG Amplitude

Time (seconds)

…

37 of 48

Model: 1-D Convolutional Neural Network

EEG Amplitude

Time (seconds)

…

 

38 of 48

Model: 1-D Convolutional Neural Network

EEG Amplitude

Time (seconds)

…

 

39 of 48

Model: 1-D Convolutional Neural Network

EEG Amplitude

Time (seconds)

…

 

40 of 48

Model: 1-D Convolutional Neural Network

EEG Amplitude

Time (seconds)

…

…

41 of 48

Model: 1-D Convolutional Neural Network

…

…

…

…

 

 

Regression

Classification

42 of 48

Model: 1-D Convolutional Neural Network

…

…

…

…

 

…

 

 

 

43 of 48

Model: 1-D Convolutional Neural Network

42

…

…

…

…

 

…

 

 

 

44 of 48

Model: 1-D Convolutional Neural Network

…

…

…

…

 

 

…

45 of 48

Model: 1-D Convolutional Neural Network

Increasing Receptive Field Sizes

Input

Convolutional

Layer 1

Convolutional

Layer 2

…

46 of 48

Data: Images and Volumes

Images (2-D)

Volumes (3-D)

47 of 48

Model: n-D Convolutional Neural Networks

2-D Convolution

3-D Convolution

48 of 48

Key Components of Machine Learning

  1. Data

What are the inputs and the true outputs?

  • Model

How are we transforming the inputs into outputs?

  • Objective Function

How do we determine if the outputs of the model are good?

  • Learning Algorithm

How do we find model parameters that lead to good model outputs?