
# Decoding brain waves to detect hand motion

Zonayed Rahman, Elijah Whittle

#### Introduction

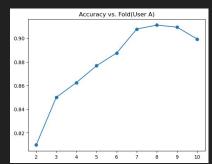
- Hand Movement Dataset
  - From Kaggle
  - 112 features 56 mean readings, 56 std readings
    - alpha, beta, delta, and theta waves from 14
      electrode channels
- Models
  - Logistic Regression
  - Support Vector Machines
  - Neural Networks

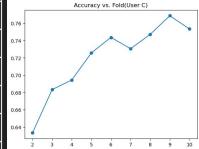


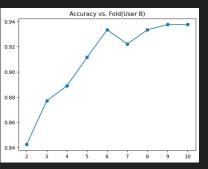


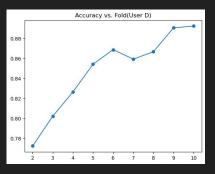
## Logistic Regression

- Polynomial Feature Transformation
- K-fold Cross Validation with Regularization


## Polynomial Feature Transformation


| Datasets | Degree = 1 | Degree = 2 |
|----------|------------|------------|
| User A   | 0.63021    | 0.85938    |
| User B   | 0.63715    | 0.89063    |
| User C   | 0.50868    | 0.71181    |
| User D   | 0.53819    | 0.84722    |


## K-Fold CV with L1 Regularization


•  $C = \lambda^{-1}$ , 10 values tested from 0.0001 to 10000

|    | U     | ser_a   | User_b |         | τ     | Jser_c  | User_d |         |
|----|-------|---------|--------|---------|-------|---------|--------|---------|
| K  | C     | Score   | C      | Score   | C     | Score   | C      | Score   |
| 2  | 0.1   | 0.80972 | 100    | 0.84236 | 10    | 0.63333 | 1000   | 0.77222 |
| 3  | 10    | 0.85    | 100    | 0.87708 | 1000  | 0.68333 | 1      | 0.80208 |
| 4  | 10000 | 0.8625  | 1      | 0.88888 | 0.1   | 0.69444 | 100    | 0.82638 |
| 5  | 1     | 0.87673 | 1      | 0.91145 | 1000  | 0.72569 | 10     | 0.85416 |
| 6  | 1     | 0.8875  | 10     | 0.93333 | 1     | 0.74375 | 1      | 0.86875 |
| 7  | 100   | 0.90776 | 10     | 0.92214 | 1000  | 0.73058 | 10     | 0.85922 |
| 8  | 1     | 0.91111 | 10     | 0.93333 | 0.01  | 0.74722 | 1000   | 0.86667 |
| 9  | 100   | 0.90937 | 1      | 0.9375  | 0.1   | 0.76875 | 1      | 0.89063 |
| 10 | 1     | 0.89930 | 10     | 0.9375  | 10000 | 0.75347 | 100    | 0.89236 |









# K-Fold CV with L2 Regularization

•  $C = \lambda^{-1}$ , 10 values tested from 0.0001 to 10000

|    |      |         |      |         |       |         |      |         | 2 3 4 5 6 7 8 9 10 0.92        |
|----|------|---------|------|---------|-------|---------|------|---------|--------------------------------|
|    | υ    | Jser_a  | ļ    | User_b  | τ     | Jser_c  | τ    | Jser_d  | 0.91 -                         |
| K  | C    | Score   | C    | Score   | C     | Score   | C    | Score   | 0.89 -                         |
| 2  | 0.01 | 0.81389 | 0.01 | 0.86597 | 1     | 0.65    | 0.01 | 0.79930 | 0.88 -                         |
| 3  | 0.01 | 0.85416 | 0.1  | 0.90313 | 0.1   | 0.70520 | 1    | 0.82917 | Accuracy vs. Fold(User C)      |
| 4  | 0.1  | 0.86805 | 0.01 | 0.90556 | 1     | 0.71528 | 0.01 | 0.83611 | 0.74                           |
| 5  | 1    | 0.88368 | 0.1  | 0.91146 | 10    | 0.74306 | 1    | 0.87152 | 0.72                           |
| 6  | 0.1  | 0.8875  | 1    | 0.93542 | 0.01  | 0.74583 | 0.1  | 0.87292 | 0.70                           |
| 7  | 0.1  | 0.90754 | 0.1  | 0.92700 | 0.01  | 0.74029 | 1    | 0.88107 | 0.68 Accuracy vs. Fold(User D) |
| 8  | 100  | 0.90833 | 0.01 | 0.94166 | 0.1   | 0.76667 | 0.1  | 0.88611 | 2 3 4 5 6 7 8 9 10 0.88        |
| 9  | 0.01 | 0.91563 | 100  | 0.93438 | 0.1   | 0.75313 | 0.1  | 0.8875  | 0.86 -                         |
| 10 | 1    | 0.90278 | 0.01 | 0.93056 | 10000 | 0.76736 | 10   | 0.89583 | 0.84 -                         |
|    |      |         |      |         |       |         |      |         | 0.82 -                         |

0.82

Accuracy vs. Fold(User A)

Accuracy vs. Fold(User b)

## Logistic Regression - Conclusion

- Best model: 2nd degree polynomial feature transformation with L2 regularization
- Test set accuracy: 0.91563, 0.94166, 0.76667, 0.89583

## **Support Vector Machines**

- Linear Kernel
- Polynomial Kernel

## Support Vector Machine: Linear Kernel

|               | L1 N | Norm    | L2 Norm |         |  |
|---------------|------|---------|---------|---------|--|
|               | C    | Score   | C       | Score   |  |
| User A: Train | 1    | 0.68099 | 0.1     | 0.67014 |  |
| User A: Test  | 10   | 0.64583 | 0.1     | 0.64063 |  |
| User B: Train | 100  | 0.71224 | 1       | 0.71181 |  |
| User B: Test  | 0.01 | 0.64410 | 0.01    | 0.64757 |  |
| User C: Train | 100  | 0.59071 | 0.1     | 0.58681 |  |
| User C: Test  | 1    | 0.50868 | 0.1     | 0.51042 |  |
| User D: Train | 100  | 0.60807 | 0.1     | 0.60547 |  |
| User D: Test  | 0.1  | 0.55729 | 0.001   | 0.55208 |  |

# Support Vector Machine: Polynomial Kernel

| Datasets | Training |         | Test   |         |  |
|----------|----------|---------|--------|---------|--|
| Users    | Degree   | Score   | Degree | Score   |  |
| User A   | 3        | 0.84983 | 2      | 0.73438 |  |
| User B   | 3        | 0.96658 | 3      | 0.86458 |  |
| User C   | 3        | 0.82204 | 3      | 0.61631 |  |
| User D   | 2        | 0.89583 | 2      | 0.76736 |  |

### K-Fold Cross Validation

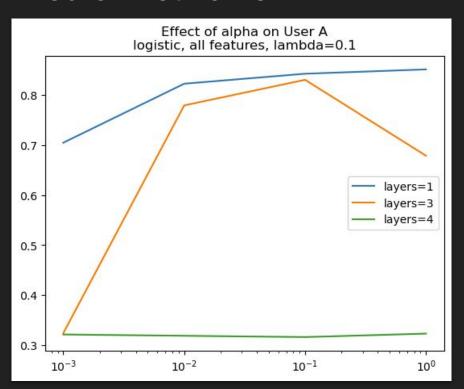
| K  | User A |         | User B |         | User C |         | User D |         |
|----|--------|---------|--------|---------|--------|---------|--------|---------|
|    | Degree | Score   | Degree | Score   | Degree | Score   | Degree | Score   |
| 2  | 2      | 0.72152 | 3      | 0.79722 | 3      | 0.56388 | 3      | 0.72291 |
| 3  | 2      | 0.75625 | 3      | 0.87187 | 3      | 0.62083 | 3      | 0.76979 |
| 4  | 2      | 0.775   | 3      | 0.88055 | 3      | 0.62222 | 3      | 0.79444 |
| 5  | 2      | 0.77951 | 3      | 0.90104 | 3      | 0.64583 | 3      | 0.80902 |
| 6  | 3      | 0.79583 | 3      | 0.90416 | 3      | 0.65833 | 3      | 0.8125  |
| 7  | 2      | 0.79318 | 3      | 0.90510 | 3      | 0.64563 | 3      | 0.82281 |
| 8  | 3      | 0.8     | 3      | 0.90833 | 3      | 0.65277 | 3      | 0.82777 |
| 9  | 3      | 0.80625 | 3      | 0.90625 | 3      | 0.675   | 3      | 0.83125 |
| 10 | 3      | 0.80208 | 3      | 0.90972 | 3      | 0.67361 | 3      | 0.83333 |

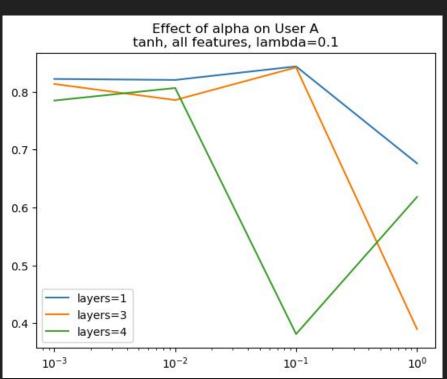
#### **Neural Networks**

- 60% train, 40% test
- NN structures tried:
  - o 112 -> [112] -> 3
  - 112 -> [112, 112, 112] -> 3
  - 112 -> [112, 56, 30, 10] -> 3
  - o 56 -> ... -> 3
- L2 regularization: lambda in range [0.00001, 1000]

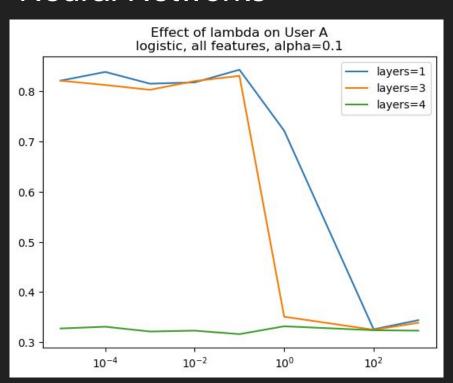
### Neural Networks - Best Results

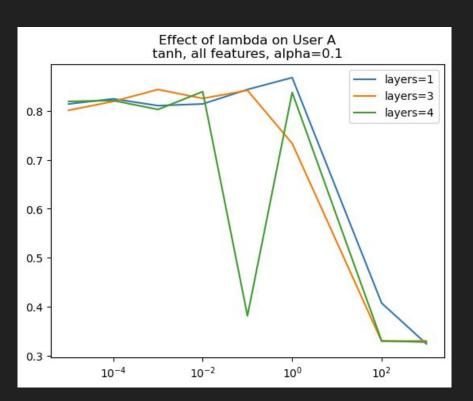
|                       | User A<br>(logistic) | User A (tanh) | User B (logistic) | User B (tanh) | User C (logistic) | User C (tanh) | User D (logistic) | User D<br>(tanh) |
|-----------------------|----------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|------------------|
| Test accuracy         | 85.1563%             | 86.8056%      | 88.6285%          | 91.4063%      | 70.4861%          | 67.1007%      | 81.3368%          | 81.5972%         |
| Precision % (0, 1, 2) | 83.8,                | 87.1,         | 90.5,             | 84.9,         | 70.0,             | 68.2,         | 83.7,             | 81.6,            |
|                       | 84.3,                | 86.3,         | 85.1,             | 79.9,         | 70.0,             | 66.1,         | 81.7,             | 80.4,            |
|                       | 84.0                 | 84.2          | 88.9              | 80.1          | 61.7              | 65.1          | 82.5              | 79.2             |
| Recall % (0, 1, 2)    | 86.7,                | 86.2,         | 88.6,             | 85.8,         | 68.4,             | 71.0,         | 82.4,             | 82.7,            |
|                       | 80.9,                | 83.3,         | 88.5,             | 77.4,         | 72.6,             | 68.7,         | 83.4,             | 82.4,            |
|                       | 84.4                 | 88.3          | 87.3              | 81.7          | 60.7              | 59.8          | 82.2              | 76.2             |


### Neural Networks - Best Results


| Confusion<br>Matrix | User | · A |     | Useı | : B |     | Useı | : C |     | Useı | : D |     |
|---------------------|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|
| logistic            | 332  | 28  | 23  | 334  | 27  | 16  | 268  | 46  | 78  | 318  | 36  | 38  |
|                     | 32   | 305 | 40  | 17   | 337 | 27  | 46   | 284 | 61  | 27   | 318 | 29  |
|                     | 32   | 29  | 331 | 18   | 32  | 344 | 69   | 76  | 224 | 35   | 35  | 316 |
| tanh                | 332  | 32  | 21  | 337  | 27  | 29  | 274  | 53  | 59  | 305  | 22  | 42  |
|                     | 27   | 333 | 40  | 36   | 291 | 49  | 56   | 263 | 64  | 33   | 324 | 36  |
|                     | 22   | 21  | 324 | 24   | 46  | 313 | 72   | 82  | 229 | 36   | 57  | 297 |

### Neural Networks - Best Results


|                                     | User A (logistic) | User A (tanh) | User B (logistic)   | User B (tanh)       | User C (logistic) | User C (tanh) | User D<br>(logistic) | User D<br>(tanh)   |
|-------------------------------------|-------------------|---------------|---------------------|---------------------|-------------------|---------------|----------------------|--------------------|
| Test accuracy                       | 85.1563%          | 86.8056%      | 88.6285<br>%        | 91.4063<br>%        | 70.4861<br>%      | 67.1007%      | 81.3368%             | 81.5972%           |
| Alpha                               | 1.0               | 0.1           | 0.1                 | 1.0                 | 1.0               | 0.001         | 1.0                  | 0.01               |
| Lambda                              | 0.1               | 1.0           | 0.1                 | 0.1                 | 0.1               | 1.0           | 0.1                  | 1.0                |
| Hidden Layer<br>Structure           | (112)             | (112)         | (112,<br>112, 112)  | (112)               | (112)             | (112)         | (112)                | (112, 112,<br>112) |
| # models above<br>85% test accuracy | 1 (0.1736%)       | 2 (0.3472%)   | 22<br>(3.8194%<br>) | 41<br>(7.1181<br>%) | 0 (0%)            | 0 (0%)        | 0 (0%)               | 0 (0%)             |


#### **Neural Networks**





#### **Neural Networks**





# Conclusions

| User A: | Logistic | SVMs    | Neural Networking |
|---------|----------|---------|-------------------|
| 300171. | 0.91944  | 0.80208 | 0.86806           |
| User B: | Logistic | SVMs    | Neural Networking |
| USEI B. | 0.94166  | 0.90972 | 0.91406           |
|         | Logistic | SVMs    | Neural Networking |
| User C: | 0.76667  | 0.67361 | 0.70486           |
| User D: | Logistic | SVMs    | Neural Networking |
|         | 0.89583  | 0.83333 | 0.81597           |

#### Conclusions

- 2nd degree polynomial feature transformation with L2 regularization performed the best
- Dataset is not very linearly separable
- Potential Bottleneck:
  - relatively low sample size
  - Better data pre-processing